Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 724: 102-11, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24374007

RESUMO

Glucocorticoids are used widely in the treatment of inflammatory diseases, but use is accompanied by a significant burden of adverse effects. It has been hypothesized that gene- and cell-specific regulation of the glucocorticoid receptor by small molecule ligands could be translated into a therapeutic with an improved risk-benefit profile. MK-5932 is a highly selective glucocorticoid receptor modulator that is anti-inflammatory in vivo with an improved profile on glucose metabolism: Bungard et al. (2011). Bioorg. Med. Chem. 19, 7374-7386. Here we describe the full biological profile of MK-5932. Cytokine production following lipopolysaccharide (LPS) challenge was blocked by MK-5932 in both rat and human whole blood. Oral administration reduced inflammatory cytokine levels in the serum of rats challenged with LPS. MK-5932 was anti-inflammatory in a rat contact dermatitis model, but was differentiated from 6-methylprednisolone by a lack of elevation of fasting insulin or glucose levels after 7 days of dosing, even at high exposure levels. In fact, animals in the vehicle group were consistently hyperglycemic at the end of the study, and MK-5932 normalized glucose levels in a dose-dependent manner. MK-5932 was also anti-inflammatory in the rat collagen-induced arthritis and adjuvant-induced arthritis models. In healthy dogs, oral administration of MK-5932 exerted acute pharmacodynamic effects with potency comparable to prednisone, but with important differences on neutrophil counts, again suggestive of a dissociated profile. Important gaps in our understanding of mechanism of action remain, but MK-5932 will be a useful tool in dissecting the mechanisms of glucose dysregulation by therapeutic glucocortiocids.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Benzamidas/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Edema/tratamento farmacológico , Indazóis/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Benzamidas/sangue , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Colágeno , Citocinas/sangue , Cães , Feminino , Células HeLa , Humanos , Indazóis/sangue , Indazóis/farmacocinética , Indazóis/farmacologia , Insulina , Lipopolissacarídeos , Masculino , Metilprednisolona/farmacologia , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
2.
Mol Cancer Ther ; 4(5): 751-60, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15897239

RESUMO

Matrix metalloproteinase (MMP)-activated prodrugs were formed by coupling MMP-cleavable peptides to doxorubicin. The resulting conjugates were excellent in vitro substrates for MMP-2, -9, and -14. HT1080, a fibrosarcoma cell line, was used as a model system to test these prodrugs because these cells, like tumor stromal fibroblasts, expressed several MMPs. In cultured HT1080 cells, simple MMP-cleavable peptides were primarily metabolized by neprilysin, a membrane-bound metalloproteinase. MMP-selective metabolism in cultured HT1080 cells was obtained by designing conjugates that were good MMP substrates but poor neprilysin substrates. To determine how conjugates were metabolized in animals, MMP-selective conjugates were given to mice with HT1080 xenografts and the distribution of doxorubicin was determined. These studies showed that MMP-selective conjugates were preferentially metabolized in HT1080 xenografts, relative to heart and plasma, leading to 10-fold increases in the tumor/heart ratio of doxorubicin. The doxorubicin deposited by a MMP-selective prodrug, compound 6, was more effective than doxorubicin at reducing HT1080 xenograft growth. In particular, compound 6 cured 8 of 10 mice with HT1080 xenografts at doses below the maximum tolerated dose, whereas doxorubicin cured 2 of 20 mice at its maximum tolerated dose. Compound 6 was less toxic than doxorubicin at this efficacious dose because mice treated with compound 6 had no detectable changes in body weight or reticulocytes, a marker for marrow toxicity. Hence, MMP-activated doxorubicin prodrugs have a much higher therapeutic index than doxorubicin using HT1080 xenografts as a preclinical model.


Assuntos
Doxorrubicina/análogos & derivados , Fibrossarcoma/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Fragmentos de Peptídeos/farmacologia , Pró-Fármacos/farmacologia , Animais , Doxorrubicina/síntese química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fibrossarcoma/metabolismo , Humanos , Metaloproteinases da Matriz Associadas à Membrana , Camundongos , Neprilisina/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Transplante Heterólogo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...