Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435346

RESUMO

Configurationally stable 5-aza[6]helicene (1) was envisaged as a promising scaffold for non-conventional ionic liquids (IL)s. It was prepared, purified, and separated into enantiomers by preparative HPLC on a chiral stationary phase. Enantiomerically pure quaternary salts of 1 with appropriate counterions were prepared and fully characterized. N-octyl-5-aza[6]helicenium bis triflimidate (2) was tested in very small quantities as a selector in achiral IL media to perform preliminary electrochemical enantiodifferentiation experiments on the antipodes of two different chiral probes. The new organic salt exhibited outstanding enantioselection performance with respect to these probes, thus opening the way to applications in the enantioselective electroanalysis of relevant bioactive molecules.


Assuntos
Técnicas Eletroquímicas , Líquidos Iônicos/química , Líquidos Iônicos/síntese química , Estrutura Molecular , Estereoisomerismo
2.
Chem Sci ; 10(9): 2708-2717, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996988

RESUMO

Chiral oligothiophene monomers with C 2 symmetry, based on 3,3'-bithiophene atropisomeric cores with high racemization barriers, have recently been shown to provide excellent chiral starting materials with high electroactivity for the easy preparation of enantiopure electroactive films endowed with powerful chirality manifestations. We now introduce an inherently chiral monomer based on a 2,2'-biindole core, as the prototype of a new inherently chiral monomer family, whose properties could be modulable through functionalization of the pyrrolic N atoms. By fast, regular electrooligomerization the new monomer yields inherently chiral films with high, reversible electroactivity and, above all, impressive enantioselectivity towards very different chiral probes, some of pharmaceutical interest, as general-scope electrode surfaces. Such results, while opening the way to a new, attractive inherently chiral selector class, nicely confirm the general validity of the inherent chirality strategy for chiral electrochemistry. Furthermore, the enantioselectivity of the new selectors not only holds with electroactive chiral probes, but also with circularly polarized light components as well as electron spins, resulting in good chiroptical and spin filter performances, which suggests fascinating correlations between the three contexts.

3.
Chem Sci ; 10(9): 2750-2757, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996993

RESUMO

Impressive spin-related effects are observed in cyclic voltammetry (CV) experiments performed under an applied magnetic field on a non-ferromagnetic electrode modified with a thin electroactive oligothiophene film, either "inherently chiral" or featuring chiral pendants with stereogenic centres. When flipping the magnet's north/south orientation, the CV peaks of two achiral, chemically reversible Fe(iii)/Fe(ii) redox couples in aqueous or organic solution undergo impressive potential shifts (up to nearly 0.5 V depending on protocol conditions), specularly by changing the film's (R)- or (S)-configuration. The magnitude of the potential shift decreases upon increasing both the polymer film thickness and the distance between the permanent magnet and the electrode surface. Such unprecedented spin-related redox potential modulation, obtained in the absence of a magnetic electrode acting as a spin injector, provides striking evidence (as well as an attractive evaluation criterion) of the spin selectivity properties of chiral thin films.

4.
Chem Sci ; 10(5): 1539-1548, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809372

RESUMO

Chiral electroanalysis could be regarded as the highest recognition degree in electrochemical sensing, implying the ability to discriminate between specular images of an electroactive molecule, particularly in terms of significant peak potential difference. A groundbreaking strategy was recently proposed, based on the use of "inherently chiral" molecular selectors, with chirality and key functional properties originating from the same structural element. Large differences in peak potentials have been observed for the enantiomers of different chiral molecules, also of applicative interest, using different selectors, all of them based on atropisomeric biheteroaromatic scaffolds of axial stereogenicity. However, helicene systems also provide inherently chiral building blocks with attractive features. In this paper the enantiodiscrimination performances of enantiopure inherently chiral films obtained by electrooxidation of a thiahelicene monomer with helicoidal stereogenicity are presented for the first time. The outstanding potentialities of this novel approach are evaluated towards chiral probes with different chemical nature and bulkiness, in comparison with a representative case of the so far exploited class of inherently chiral selectors with axial stereogenicity. It is also verified that the high enantiodiscrimination ability holds as well for electron spins, as for atropisomeric selectors.

5.
Angew Chem Int Ed Engl ; 56(8): 2079-2082, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28097741

RESUMO

To achieve enantioselective electroanalysis either chiral electrodes or chiral media are needed. High enantiodiscrimination properties can be granted by the "inherent chirality" strategy of developing molecular materials in which the stereogenic element responsible for chirality coincides with the molecular portion responsible for their specific properties, an approach recently yielding outstanding performances as electrode surfaces. Inherently chiral ionic liquids (ICILs) have now been prepared starting from atropisomeric 3,3'-bicollidine, synthesized from inexpensive reagents, resolved into antipodes without need of chiral HPLC and converted into long-chain dialkyl salts with melting points below room temperature. Both the new ICILs and shorter family terms, solid at room temperature, employed as low-concentration additives in achiral ILs, afford impressive enantioselection for the enantiomers of different probes on achiral electrodes, regularly increasing with additive concentration.

6.
Chem Sci ; 6(3): 1706-1711, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694945

RESUMO

2,2'-Bis[2-(5,2'-bithienyl)]-3,3'-bithianaphthene oligomers are a model case of electroactive films endowed with "inherent chirality", originating from a stereogenic element coinciding with the whole electroactive backbone, thus resulting in impressive manifestations. This study highlights their applicative potentialities as low-cost and easy-to-prepare artificial enantiopure electrode surfaces, which display an unprecedented ability to pronouncedly separate voltammetry peaks of enantiomers of quite different chiral probes of applicative interest, concurrently with linear dynamic ranges for peak currents, affording enantiomer excess determination. Thus inherently chiral enantiopure electrodes can indeed be regarded as a key to chiral voltammetry.

7.
Chemistry ; 15(1): 86-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19053102

RESUMO

Two new tris(aryl)phosphane oxides existing as configurationally stable residual enantiomers have been synthesised and their racemates resolved by semipreparative HPLC on a chiral stationary phase (CSP HPLC). One of them, recognised as a conglomerate, could be resolved by fractional crystallisation at a preparative scale level. In this case, the absolute configuration of the propeller-shaped molecule was determined by anomalous X-ray scattering. The problem of the correlative assignment of the absolute configuration to all known C(3)-symmetric three-bladed propeller-shaped molecules existing as stable residual enantiomers is discussed. The configurational stability of the new chiral phosphane oxides and of the corresponding phosphanes was evaluated by CD signal decay kinetics and dynamic (1)H NMR spectroscopy. The racemisation barriers in phosphanes were found about 10 kcal mol(-1) lower than those found for the corresponding oxides, though geometry and inter-ring gearing would be very similar in the two series. Configurational stability of residual tris(aryl)phosphanes was found to be influenced by the electronic availability of the phosphorus centre, as evaluated by electrochemical CV experiments.

8.
Chemistry ; 12(15): 4091-100, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16544344

RESUMO

We have designed and synthesised a new organometallic molecule containing three ferrocene groups for use as a highly sensitive electrochemical marker in biological assays. This trisferrocene derivative was conjugated to different PNA monomers, and the electrochemical activities of the conjugates were extensively investigated in organic solvents, in view of their potential diagnostic applications. The results showed that the introduction of a trisferrocene unit on the PNA monomer triples the current signal in comparison with the monoferrocene-labelled one. Despite their greater molecular complexity, trisferrocene-conjugated PNA monomers are even more electrochemically active than the reference ferrocene. By using differential pulse voltammetry (DPV), the detection limit can reach 10(-8) M in acetonitrile solution. These results are a good premise for the use of the trisferrocene unit as an effective electrochemical probe for biomolecules.


Assuntos
Eletroquímica , Compostos Ferrosos , Ácidos Nucleicos Peptídicos/química , Coloração e Rotulagem , Trometamina/análogos & derivados , Biomarcadores/química , Metalocenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...