Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887048

RESUMO

Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes' translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene' sets' content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.

2.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055151

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by the early onset of communication and behavioral problems. ASD is highly heritable; however, environmental factors also play a considerable role in this disorder. A significant part of both syndromic and idiopathic autism cases could be attributed to disorders caused by mammalian target of rapamycin (mTOR)-dependent translation deregulation. This narrative review analyzes both bioinformatic and experimental evidence that connects mTOR signaling to the maternal autoantibody-related (MAR) autism spectrum and autoimmune neuropsychiatric disorders simultaneously. In addition, we reconstruct a network presenting the interactions between the mTOR signaling and eight MAR ASD genes coding for ASD-specific maternal autoantibody target proteins. The research discussed in this review demonstrates novel perspectives and validates the need for a subtyping of ASD on the grounds of pathogenic mechanisms. The utter necessity of designing ELISA-based test panels to identify all antibodies related to autism-like behavior is also considered.


Assuntos
Transtorno do Espectro Autista/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Serina-Treonina Quinases TOR/metabolismo , Transtorno do Espectro Autista/classificação , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/metabolismo , Autoanticorpos/metabolismo , Criança , Biologia Computacional/métodos , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/classificação , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais
3.
J Biomed Res ; 37(3): 194-212, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37161885

RESUMO

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells ex vivo. Comparative analysis of the antitumor effects of in situ vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted. Antibodies against programmed death 1 (PD1) checkpoint inhibitors or their corresponding PD1 DNA aptamers were also added to vaccination regimens for analytical purposes. Four scenarios were considered: a weakly immunogenic Krebs-2 carcinoma grafted in CBA mice; a moderately immunogenic Lewis carcinoma grafted in C57Black/6 mice; and an immunogenic A20 B cell lymphoma or an Ehrlich carcinoma grafted in BALB/c mice. Adding anti-PD1 antibodies (CpG+αOX40+αPD1) to in situ vaccinations boosts the antitumor effect. When to be used instead of antibodies, aptamers also possess antitumor activity, although this effect was less pronounced. The strongest effect across all the tumors was observed in highly immunogenic A20 B cell lymphoma and Ehrlich carcinoma.

4.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230133

RESUMO

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Assuntos
Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/imunologia , DNA/imunologia , Feminino , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores OX40/imunologia , Vacinação/métodos
5.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065644

RESUMO

Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.


Assuntos
Doenças Autoimunes/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transtorno do Espectro Autista/genética , Colecalciferol/genética , Bases de Dados Genéticas , Proteína do X Frágil da Deficiência Intelectual/genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos
6.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847491

RESUMO

Autism spectrum disorder (ASD) has a strong and complex genetic component with an estimate of more than 1000 genes implicated cataloged in SFARI (Simon's Foundation Autism Research Initiative) gene database. A significant part of both syndromic and idiopathic autism cases can be attributed to disorders caused by the mechanistic target of rapamycin (mTOR)-dependent translation deregulation. We conducted gene-set analyses and revealed that 606 out of 1053 genes (58%) included in the SFARI Gene database and 179 out of 281 genes (64%) included in the first three categories of the database ("high confidence", "strong candidate", and "suggestive evidence") could be attributed to one of the four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, 4. vitamin D3 sensitive genes. The additional gene network analysis revealed 43 new genes and 127 new interactions, so in the whole 222 out of 281 (79%) high scored genes from SFARI Gene database were connected with mTOR signaling activity and/or dependent on vitamin D3 availability directly or indirectly. We hypothesized that genetic and/or environment mTOR hyperactivation, including provocation by vitamin D deficiency, might be a common mechanism controlling the expressivity of most autism predisposition genes and even core symptoms of autism.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Vitamina D/genética , Redes Reguladoras de Genes/genética , Humanos
7.
Genes (Basel) ; 10(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766757

RESUMO

Plants constantly fight with stressful factors as high or low temperature, drought, soil salinity and flooding. Plants have evolved a set of stress response mechanisms, which involve physiological and biochemical changes that result in adaptive or morphological changes. At a molecular level, stress response in plants is performed by genetic networks, which also undergo changes in the process of evolution. The study of the network structure and evolution may highlight mechanisms of plants adaptation to adverse conditions, as well as their response to stresses and help in discovery and functional characterization of the stress-related genes. We performed an analysis of Arabidopsis thaliana genes associated with several types of abiotic stresses (heat, cold, water-related, light, osmotic, salt, and oxidative) at the network level using a phylostratigraphic approach. Our results show that a substantial fraction of genes associated with various types of abiotic stress is of ancient origin and evolves under strong purifying selection. The interaction networks of genes associated with stress response have a modular structure with a regulatory component being one of the largest for five of seven stress types. We demonstrated a positive relationship between the number of interactions of gene in the stress gene network and its age. Moreover, genes of the same age tend to be connected in stress gene networks. We also demonstrated that old stress-related genes usually participate in the response for various types of stress and are involved in numerous biological processes unrelated to stress. Our results demonstrate that the stress response genes represent the ancient and one of the fundamental molecular systems in plants.


Assuntos
Arabidopsis/genética , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
8.
BMC Genomics ; 20(Suppl 3): 292, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32039701

RESUMO

BACKGROUND: Net blotch caused by Pyrenophra teres f. teres is a major foliar disease of barley. Infection can result in significant yield losses of susceptible cultivars of up to 40%. Of the two forms of net blotch (P. teres f. teres and P. teres f. maculata), P. teres f. teres (net form of net blotch) is the dominant one in Russia. The goal of the current study was to identify genomic regions associated with seedling resistance to several pathotypes of the net form of net blotch in Siberian spring barley genotypes. For this, a genome-wide association study of a Siberian barley collection, genotyped with 50 K Illumina SNP-chip, was carried out. RESULTS: Seedling resistance of 94 spring barley cultivars and lines to four Pyrenophora teres f. teres isolates (S10.2, K5.1, P3.4.0, and A2.6.0) was investigated. According to the Tekauz rating scale, 25, 21, 14, and 14% of genotypes were highly resistant, and 19, 8, 9, and 16% of genotypes were moderate-resistant to the isolates S10.2, K5.1, P3.4.0, and A2.6.0, respectively. Eleven genotypes (Alag-Erdene, Alan-Bulag, L-259/528, Kedr, Krymchak 55, Omsky golozyorny 2, Omsky 13709, Narymchanin, Pallidum 394, Severny and Viner) were resistant to all studied isolates. Nine additional cultivars (Aley, Barkhatny, Belogorsky, Bezenchuksky 2, Emelya, G-19980, Merit 57, Mestny Primorsky, Slavaynsky) were resistant to 3 of the 4 isolates. The phenotyping and genotyping data were analysed using several statistical models: GLM + Q, GLM + PCA, GLM + PCA + Q, and the MLM + kinship matrix. In total, 40 SNPs in seven genomic regions associated with net blotch resistance were revealed: the region on chromosome 1H between 57.3 and 62.8 cM associated with resistance to 2 isolates (to P3.4.0 at the significant and K5.1 at the suggestive levels), the region on chromosome 6H between 52.6 and 55.4 cM associated with resistance to 3 isolates (to P3.4.0 at the significant and K5.1 and S10.2 at the suggestive levels), three isolate-specific significant regions (P3.4.0-specific regions on chromosome 2H between 71.0 and 74.1 cM and on chromosome 3H between 12.1 and 17.4 cM, and the A2.6.0-specific region on chromosome 3H between 50.9 and 54.8 cM), as well as two additional regions on chromosomes 2H (between 23.2 and 23.8 cM, resistant to S10.2) and 3 (between 135.6 and 137.5 cM resistant to K5.1) with suggestive SNPs, coinciding, however, with known net blotch resistance quantitative trait loci (QTLs) at the same regions. CONCLUSIONS: Seven genomic regions on chromosomes 1H, 2H, 3H, and 6H associated with the resistance to four Pyrenophora teres f. teres isolates were identified in a genome-wide association study of a Siberian spring barley panel. One novel isolate-specific locus on chromosome 3 between 12.1 and 17.4 cM was revealed. Other regions identified in the current study coincided with previously known loci conferring resistance to net blotch. The significant SNPs revealed in the current study can be converted to convenient PCR markers for accelerated breeding of resistant barley cultivars.


Assuntos
Ascomicetos/fisiologia , Hordeum/genética , Hordeum/microbiologia , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Hordeum/fisiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...