Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 51(4): 499-508, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36639242

RESUMO

Physiologically based pharmacokinetic (PBPK) models consist of compartments representing different tissues. As most models are only verified based on plasma concentrations, it is unclear how reliable associated tissue profiles are. This study aimed to assess the accuracy of PBPK-predicted beta-lactam antibiotic concentrations in different tissues and assess the impact of using effect site concentrations for evaluation of target attainment. Adipose, bone, and muscle concentrations of five beta-lactams (piperacillin, cefazolin, cefuroxime, ceftazidime, and meropenem) in healthy adults were collected from literature and compared with PBPK predictions. Model performance was evaluated with average fold errors (AFEs) and absolute AFEs (AAFEs) between predicted and observed concentrations. In total, 26 studies were included, 14 of which reported total tissue concentrations and 12 unbound interstitial fluid (uISF) concentrations. Concurrent plasma concentrations, used as baseline verification of the models, were fairly accurate (AFE: 1.14, AAFE: 1.50). Predicted total tissue concentrations were less accurate (AFE: 0.68, AAFE: 1.89). A slight trend for underprediction was observed but none of the studies had AFE or AAFE values outside threefold. Similarly, predictions of microdialysis-derived uISF concentrations were less accurate than plasma concentration predictions (AFE: 1.52, AAFE: 2.32). uISF concentrations tended to be overpredicted and two studies had AFEs and AAFEs outside threefold. Pharmacodynamic simulations in our case showed only a limited impact of using uISF concentrations instead of unbound plasma concentrations on target attainment rates. The results of this study illustrate the limitations of current PBPK models to predict tissue concentrations and the associated need for more accurate models. SIGNIFICANCE STATEMENT: Clinical inaccessibility of local effect site concentrations precipitates a need for predictive methods for the estimation of tissue concentrations. This is the first study in which the accuracy of PBPK-predicted tissue concentrations of beta-lactam antibiotics in humans were assessed. Predicted tissue concentrations were found to be less accurate than concurrent predicted plasma concentrations. When using PBPK models to predict tissue concentrations, this potential relative loss of accuracy should be acknowledged when clinical tissue concentrations are unavailable to verify predictions.


Assuntos
Modelos Biológicos , Monobactamas , Adulto , Humanos , Ceftazidima , Antibacterianos , Músculos
2.
Xenobiotica ; 52(8): 943-956, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36222269

RESUMO

Non-specific binding in in vitro metabolism systems leads to an underestimation of the true intrinsic metabolic clearance of compounds being studied. Therefore in vitro binding needs to be accounted for when extrapolating in vitro data to predict the in vivo metabolic clearance of a compound. While techniques exist for experimentally determining the fraction of a compound unbound in in vitro metabolism systems, early in drug discovery programmes computational approaches are often used to estimate the binding in the in vitro system.Experimental fraction unbound data (n = 60) were generated in liver microsomes (fumic) from five commonly used pre-clinical species (rat, mouse, dog, minipig, monkey) and humans. Unbound fraction in incubations with mouse, rat or human hepatocytes was determined for the same 60 compounds. These data were analysed to determine the relationship between experimentally determined binding in the different matrices and across different species. In hepatocytes there was a good correlation between fraction unbound in human and rat (r2=0.86) or mouse (r2=0.82) hepatocytes. Similar correlations were observed between binding in human liver microsomes and microsomes from rat, mouse, dog, Göttingen minipig or monkey liver microsomes (r2 of >0.89, n = 51 - 52 measurements in different species). Physicochemical parameters (logP, pKa and logD) were predicted for all evaluated compounds. In addition, logP and/or logD were measured for a subset of compounds.Binding to human hepatocytes predicted using 5 different methods was compared to the measured data for a set of 59 compounds. The best methods evaluated used measured microsomal binding in human liver microsomes to predict hepatocyte binding. The collated physicochemical data were used to predict the human fumic using four different in silico models for a set of 53-60 compounds. The correlation (r2) and root mean square error between predicted and observed microsomal binding was 0.69 & 0.20, 0.47 & 0.23, 0.56 & 0.21 and 0.54 & 0.26 for the Turner-Simcyp, Austin, Hallifax-Houston and Poulin models, respectively. These analyses were extended to include measured literature values for binding in human liver microsomes for a larger set of compounds (n=697). For the larger dataset of compounds, microsomal binding was well predicted for neutral compounds (r2=0.67 - 0.70) using the Poulin, Austin, or Turner-Simcyp methods but not for acidic or basic compounds (r2<0.5) using any of the models. While the lipophilicity-based models can be used, the in vitro binding should be measured for compounds where more certainty is needed, using appropriately calibrated assays and possibly established weak, moderate, and strong binders as reference compounds to allow comparison across databases.


Assuntos
Hepatócitos , Microssomos Hepáticos , Animais , Cães , Humanos , Camundongos , Ratos , Haplorrinos , Hepatócitos/metabolismo , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Suínos , Porco Miniatura , Reprodutibilidade dos Testes
3.
J Pharm Sci ; 106(9): 2826-2838, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28495566

RESUMO

The use of in vitro-in vivo extrapolation (IVIVE) techniques, mechanistically incorporated within physiologically based pharmacokinetic (PBPK) models, can harness in vitro drug data and enhance understanding of in vivo pharmacokinetics. This study's objective was to develop a user-friendly rat (250 g, male Sprague-Dawley) IVIVE-linked PBPK model. A 13-compartment PBPK model including mechanistic absorption models was developed, with required system data (anatomical, physiological, and relevant IVIVE scaling factors) collated from literature and analyzed. Overall, 178 system parameter values for the model are provided. This study also highlights gaps in available system data required for strain-specific rat PBPK model development. The model's functionality and performance were assessed using previous literature-sourced in vitro properties for diazepam, metoprolol, and midazolam. The results of simulations were compared against observed pharmacokinetic rat data. Predicted and observed concentration profiles in 10 tissues for diazepam after a single intravenous (i.v.) dose making use of either observed i.v. clearance (CLiv) or in vitro hepatocyte intrinsic clearance (CLint) for simulations generally led to good predictions in various tissue compartments. Overall, all i.v. plasma concentration profiles were successfully predicted. However, there were challenges in predicting oral plasma concentration profiles for metoprolol and midazolam, and the potential reasons and according solutions are discussed.


Assuntos
Adjuvantes Anestésicos/farmacocinética , Antiarrítmicos/farmacocinética , Anticonvulsivantes/farmacocinética , Diazepam/farmacocinética , Metoprolol/farmacocinética , Midazolam/farmacocinética , Adjuvantes Anestésicos/administração & dosagem , Adjuvantes Anestésicos/sangue , Adjuvantes Anestésicos/metabolismo , Administração Intravenosa , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/sangue , Antiarrítmicos/metabolismo , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/sangue , Anticonvulsivantes/metabolismo , Simulação por Computador , Diazepam/administração & dosagem , Diazepam/sangue , Diazepam/metabolismo , Hepatócitos/metabolismo , Masculino , Taxa de Depuração Metabólica , Metoprolol/administração & dosagem , Metoprolol/sangue , Metoprolol/metabolismo , Midazolam/administração & dosagem , Midazolam/sangue , Midazolam/metabolismo , Modelos Biológicos , Ratos Sprague-Dawley
4.
AAPS J ; 17(5): 1268-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26100012

RESUMO

Physiologically based pharmacokinetic (PBPK) models can over-predict maximum plasma concentrations (C(max)) following intravenous administration. A proposed explanation is that invariably PBPK models report the concentration in the central venous compartment, rather than the site where the samples are drawn. The purpose of this study was to identify and validate potential corrective models based on anatomy and physiology governing the blood supply at the site of sampling and incorporate them into a PBPK platform. Four models were developed and scrutinised for their corrective potential. All assumed the peripheral sampling site concentration could be described by contributions from surrounding tissues and utilised tissue-specific concentration-time profiles reported from the full-PBPK model within the Simcyp Simulator. Predicted concentrations for the peripheral site were compared to the observed C(max). The models results were compared to clinical data for 15 studies over seven compounds (alprazolam, imipramine, metoprolol, midazolam, omeprazole, rosiglitazone and theophylline). The final model utilised tissue concentrations from adipose, skin, muscle and a contribution from artery. Predicted C(max) values considering the central venous compartment can over-predict the observed values up to 10-fold whereas the new sampling site predictions were within 2-fold of observed values. The model was particularly relevant for studies where traditional PBPK models over-predict early time point concentrations. A successful corrective model for C(max) prediction has been developed, subject to further validation. These models can be enrolled as built-up modules into PBPK platforms and potentially account for factors that may affect the initial mixing of the blood at the site of sampling.


Assuntos
Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Administração Intravenosa , Animais , Humanos , Preparações Farmacêuticas/administração & dosagem
5.
Eur J Pharm Sci ; 57: 280-91, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-23988844

RESUMO

Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction.


Assuntos
Biofarmácia/métodos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Humanos , Modelos Lineares , Modelos Animais , Modelos Biológicos , Preparações Farmacêuticas/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...