Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 130, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246263

RESUMO

BACKGROUND: Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. RESULTS: An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. CONCLUSIONS: This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis.


Assuntos
Cromossomos Bacterianos/genética , Expressão Gênica , Plasmídeos , Synechocystis/genética , Engenharia Genética , Recombinação Genética , Transformação Bacteriana
2.
Physiol Plant ; 173(1): 305-320, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34145600

RESUMO

Photosynthetic cyanobacteria are exposed to rapid changes in light intensity in their natural habitats, as well as in photobioreactors. To understand the effects of such fluctuations on Synechocystis sp. PCC 6803, the global proteome of cells grown under a fluctuating light condition (low background light interrupted with high light pulses) was compared to the proteome of cells grown under constant light with concomitant acclimation of cells to low CO2 level. The untargeted global proteome of Synechocystis sp. PCC 6803 was analyzed by data-dependent acquisition (DDA), which relies on the high mass accuracy and sensitivity of orbitrap-based tandem mass spectrometry. In addition, a targeted selected reaction monitoring (SRM) approach was applied to monitor the proteomic changes in a strain lacking flavodiiron proteins Flv1 and Flv3. This strain is characterized by impaired growth and photosynthetic activity under fluctuating light. An obvious reprogramming of cell metabolism was observed in this study and was compared to a previous transcriptional analysis performed under the same fluctuating light regime. Cyanobacterial responses to fluctuating light correlated at mRNA and protein levels to some extent, but discrepancies indicate that several proteins are post-transcriptionally regulated (affecting observed protein abundances). The data suggest that Synechocystis sp. PCC 6803 maintain higher nitrogen assimilation, serving as an electron valve, for long-term acclimation to fluctuating light upon CO2 step-down. Although Flv1 and Flv3 are known to be crucial for the cells at the onset of illumination, the flavodiiron proteins, as well as components of carbon assimilation pathways, were less abundant under fluctuating light.


Assuntos
Synechocystis , Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Luz , Fotossíntese , Proteômica , Synechocystis/metabolismo
3.
Metab Eng Commun ; 12: e00163, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33552898

RESUMO

Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 â€‹± â€‹9 â€‹ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 â€‹ng â€‹l-1 OD750 -1 â€‹h-1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts.

4.
Elife ; 82019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294693

RESUMO

Flavodiiron proteins (FDPs) constitute a group of modular enzymes widespread in Bacteria, Archaea and Eukarya. Synechocystis sp. PCC 6803 has four FDPs (Flv1-4), which are essential for the photoprotection of photosynthesis. A direct comparison of light-induced O2 reduction (Mehler-like reaction) under high (3% CO2, HC) and low (air level CO2, LC) inorganic carbon conditions demonstrated that the Flv1/Flv3 heterodimer is solely responsible for an efficient steady-state O2 photoreduction under HC, with flv2 and flv4 expression strongly down-regulated. Conversely, under LC conditions, Flv1/Flv3 acts only as a transient electron sink, due to the competing withdrawal of electrons by the highly induced NDH-1 complex. Further, in vivo evidence is provided indicating that Flv2/Flv4 contributes to the Mehler-like reaction when naturally expressed under LC conditions, or, when artificially overexpressed under HC. The O2 photoreduction driven by Flv2/Flv4 occurs down-stream of PSI in a coordinated manner with Flv1/Flv3 and supports slow and steady-state O2 photoreduction.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Oxigênio/metabolismo , Synechocystis/enzimologia , Synechocystis/metabolismo , Oxirredução , Multimerização Proteica
5.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107525

RESUMO

The filamentous cyanobacterium Nostoc punctiforme has several oxidative stress-managing systems, including Dps proteins. Dps proteins belong to the ferritin superfamily and are involved in abiotic stress management in prokaryotes. Previously, we found that one of the five Dps proteins in N. punctiforme, NpDps2, was critical for H2O2 tolerance. Stress induced by high light intensities is aggravated in N. punctiforme strains deficient of either NpDps2, or the bacterioferritin-like NpDps5. Here, we have investigated the capacity of NpDps2 and NpDps5 to enhance stress tolerance by homologous overexpression of these two proteins in N. punctiforme. Both overexpression strains were found to tolerate twice as high concentrations of added H2O2 as the control strain, indicating that overexpression of either NpDps2 or NpDps5 will enhance the capacity for H2O2 tolerance. Under high light intensities, the overexpression of the two NpDps did not enhance the tolerance against general light-induced stress. However, overexpression of the heterocyst-specific NpDps5 in all cells of the filament led to a higher amount of chlorophyll-binding proteins per cell during diazotrophic growth. The OENpDps5 strain also showed an increased tolerance to ammonium-induced oxidative stress. Our results provide information of how Dps proteins may be utilised for engineering of cyanobacteria with enhanced stress tolerance.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Expressão Gênica , Nostoc/enzimologia , Estresse Oxidativo , Proteínas de Bactérias/genética , Peróxido de Hidrogênio/toxicidade , Luz , Nostoc/efeitos dos fármacos , Nostoc/genética , Nostoc/efeitos da radiação , Estresse Fisiológico
6.
Plant Cell Environ ; 40(3): 378-389, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27928824

RESUMO

In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Óperon/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Mutação/genética , Fenótipo , Espectrometria de Fluorescência , Tilacoides/metabolismo , Fatores de Tempo
7.
Plant Cell Physiol ; 57(7): 1468-1483, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26936793

RESUMO

The flavodiiron proteins (FDPs) Flv1 and Flv3 in cyanobacteria function in photoreduction of O2 to H2O, without concomitant formation of reactive oxygen species, known as the Mehler-like reaction. Both Flv1 and Flv3 are essential for growth under fluctuating light (FL) intensities, providing protection for PSI. Here we compared the global transcript profiles of the wild type (WT), Δflv1 and Δflv1/Δflv3 grown under constant light (GL) and FL. In the WT, FL induced the largest down-regulation in transcripts involved in carbon-concentrating mechanisms (CCMs), while those of the nitrogen assimilation pathways increased as compared with GL. Already under GL the Δflv1/Δflv3 double mutant demonstrated a partial down-regulation of transcripts for CCM and nitrogen metabolism, while in FL conditions the transcripts for nitrogen assimilation were strongly down-regulated. Many alterations were specific only for Δflv1/Δflv3, and not detected in Δflv1, suggesting that certain transcripts are affected primarily because of the lack of flv3 By constructing the strains overproducing solely either Flv1 or Flv3, we demonstrate that the homo-oligomers of these proteins also function in acclimation of cells to FL, by catalyzing reactions with as yet unidentified components, while the presence of both Flv1 and Flv3 is a prerequisite for the Mehler-like reaction and thus the electron transfer to O2 Considering the low expression of flv1, it is unlikely that the Flv1 homo-oligomer is present in the WT.


Assuntos
Aclimatação/efeitos da radiação , Flavoproteínas/metabolismo , Luz , Oxigênio/metabolismo , Processos Fotoquímicos/efeitos da radiação , Multimerização Proteica , Estresse Fisiológico/efeitos da radiação , Synechocystis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Flavoproteínas/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Espectrometria de Massas , Modelos Biológicos , Mutação/genética , Oxirredução , Fenótipo , Fotossíntese/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Synechocystis/efeitos da radiação , Transcriptoma/genética , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
8.
Proc Natl Acad Sci U S A ; 110(10): 4111-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431195

RESUMO

Cyanobacterial flavodiiron proteins (FDPs; A-type flavoprotein, Flv) comprise, besides the ß-lactamase-like and flavodoxin domains typical for all FDPs, an extra NAD(P)H:flavin oxidoreductase module and thus differ from FDPs in other Bacteria and Archaea. Synechocystis sp. PCC 6803 has four genes encoding the FDPs. Flv1 and Flv3 function as an NAD(P)H:oxygen oxidoreductase, donating electrons directly to O2 without production of reactive oxygen species. Here we show that the Flv1 and Flv3 proteins are crucial for cyanobacteria under fluctuating light, a typical light condition in aquatic environments. Under constant-light conditions, regardless of light intensity, the Flv1 and Flv3 proteins are dispensable. In contrast, under fluctuating light conditions, the growth and photosynthesis of the Δflv1(A) and/or Δflv3(A) mutants of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 become arrested, resulting in cell death in the most severe cases. This reaction is mainly caused by malfunction of photosystem I and oxidative damage induced by reactive oxygen species generated during abrupt short-term increases in light intensity. Unlike higher plants that lack the FDPs and use the Proton Gradient Regulation 5 to safeguard photosystem I, the cyanobacterial homolog of Proton Gradient Regulation 5 is shown not to be crucial for growth under fluctuating light. Instead, the unique Flv1/Flv3 heterodimer maintains the redox balance of the electron transfer chain in cyanobacteria and provides protection for photosystem I under fluctuating growth light. Evolution of unique cyanobacterial FDPs is discussed as a prerequisite for the development of oxygenic photosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Anabaena/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Genes Bacterianos , Luz , Mutação , Oxigênio/metabolismo , Fotossíntese , Multimerização Proteica , Synechocystis/genética , Synechocystis/efeitos da radiação
9.
J Biol Chem ; 287(40): 33153-62, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22854963

RESUMO

The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (C(i)), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the Q(B) site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by C(i) limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in C(i) conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon.


Assuntos
Carbono/química , Regulação Bacteriana da Expressão Gênica , Óperon , RNA Antissenso/genética , Synechocystis/genética , Sequência de Bases , Cianobactérias , DNA Complementar/metabolismo , Elétrons , Glucose/química , Ferro/química , Cinética , Luz , Dados de Sequência Molecular , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...