Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712058

RESUMO

Phenylketonuria (PKU), hereditary tyrosinemia type 1 (HT1), and mucopolysaccharidosis type 1 (MPSI) are autosomal recessive disorders linked to the phenylalanine hydroxylase (PAH) gene, fumarylacetoacetate hydrolase (FAH) gene, and alpha-L-iduronidase (IDUA) gene, respectively. Potential therapeutic strategies to ameliorate disease include corrective editing of pathogenic variants in the PAH and IDUA genes and, as a variant-agnostic approach, inactivation of the 4-hydroxyphenylpyruvate dioxygenase (HPD) gene, a modifier of HT1, via adenine base editing. Here we evaluated the off-target editing profiles of therapeutic lead guide RNAs (gRNAs) that, when combined with adenine base editors correct the recurrent PAH P281L variant, PAH R408W variant, or IDUA W402X variant or disrupt the HPD gene in human hepatocytes. To mitigate off-target mutagenesis, we systematically screened hybrid gRNAs with DNA nucleotide substitutions. Comprehensive and variant-aware specificity profiling of these hybrid gRNAs reveal dramatically reduced off-target editing and reduced bystander editing. Lastly, in a humanized PAH P281L mouse model, we showed that when formulated in lipid nanoparticles (LNPs) with adenine base editor mRNA, selected hybrid gRNAs revert the PKU phenotype, substantially enhance on-target editing, and reduce bystander editing in vivo. These studies highlight the utility of hybrid gRNAs to improve the safety and efficacy of base-editing therapies.

3.
Nat Biotechnol ; 42(2): 253-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37142705

RESUMO

Realizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%). We apply these systems to install putative protective mutations in vivo for Alzheimer's disease in astrocytes and for coronary artery disease in hepatocytes. In vivo prime editing with v3em PE-AAV caused no detectable off-target effects or significant changes in liver enzymes or histology. Optimized PE-AAV systems support the highest unenriched levels of in vivo prime editing reported to date, facilitating the study and potential treatment of diseases with a genetic component.


Assuntos
Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Animais , Edição de Genes/métodos , Fígado/metabolismo , Hepatócitos/metabolismo , Encéfalo , Sistemas CRISPR-Cas
4.
HGG Adv ; 5(1): 100253, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37922902

RESUMO

The c.1222C>T (p.Arg408Trp) phenylalanine hydroxylase (PAH) variant is the most frequent cause of phenylketonuria (PKU), an autosomal recessive disorder characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Here we devised a therapeutic base editing strategy to correct the variant, using prime-edited hepatocyte cell lines engineered with the c.1222C>T variant to screen a variety of adenine base editors and guide RNAs in vitro, followed by assessment in c.1222C>T humanized mice in vivo. We found that upon delivery of a selected adenine base editor mRNA/guide RNA combination into mice via lipid nanoparticles (LNPs), there was sufficient PAH editing in the liver to fully normalize blood Phe levels within 48 h. This work establishes the viability of a base editing strategy to correct the most common pathogenic variant found in individuals with the most common inborn error of metabolism, albeit with potential limitations compared with other genome editing approaches.


Assuntos
Lipossomos , Nanopartículas , Fenilalanina Hidroxilase , Fenilcetonúrias , Camundongos , Animais , Edição de Genes , RNA Mensageiro/genética , RNA Guia de Sistemas CRISPR-Cas , Fenilcetonúrias/genética , Fenilalanina Hidroxilase/genética , Adenina
5.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924808

RESUMO

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Camundongos , Animais , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Fenilalanina Hidroxilase/genética , Modelos Animais de Doenças , Fenilalanina/genética , Edição de Genes
6.
Dis Model Mech ; 16(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814839
8.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292627

RESUMO

Background: Hepatic knockdown of the proprotein convertase subtilisin/kexin type 9 ( PCSK9 ) gene or the angiopoietin-like 3 ( ANGPTL3 ) gene has been demonstrated to reduce blood low-density lipoprotein cholesterol (LDL-C) levels, and hepatic knockdown of the angiotensinogen ( AGT ) gene has been demonstrated to reduce blood pressure. Genome editing can productively target each of these three genes in hepatocytes in the liver, offering the possibility of durable "one-and-done" therapies for hypercholesterolemia and hypertension. However, concerns around making permanent gene sequence changes via DNA strand breaks might hinder acceptance of these therapies. Epigenome editing offers an alternative approach to gene inactivation, via silencing of gene expression by methylation of the promoter region, but the long-term durability of epigenome editing remains to be established. Methods: We assessed the ability of epigenome editing to durably reduce the expression of the human PCSK9, ANGPTL3 , and AGT genes in HuH-7 hepatoma cells. Using the CRISPRoff epigenome editor, we identified guide RNAs that produced efficient gene knockdown immediately after transfection. We assessed the durability of gene expression and methylation changes through serial cell passages. Results: Cells treated with CRISPRoff and PCSK9 guide RNAs were maintained for up to 124 cell doublings and demonstrated durable knockdown of gene expression and increased CpG dinucleotide methylation in the promoter, exon 1, and intron 1 regions. In contrast, cells treated with CRISPRoff and ANGPTL3 guide RNAs experienced only transient knockdown of gene expression. Cells treated with CRISPRoff and AGT guide RNAs also experienced transient knockdown of gene expression; although initially there was increased CpG methylation throughout the early part of the gene, this methylation was geographically heterogeneous-transient in the promoter, and stable in intron 1. Conclusions: This work demonstrates precise and durable gene regulation via methylation, supporting a new therapeutic approach for protection against cardiovascular disease via knockdown of genes such as PCSK9 . However, the durability of knockdown with methylation changes is not generalizable across target genes, likely limiting the therapeutic potential of epigenome editing compared to other modalities.

9.
BioDrugs ; 37(4): 453-462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314680

RESUMO

Collectively, genetic disorders affect approximately 350 million individuals worldwide and are a major global health burden. Despite substantial progress in identification of new disease-causing genes, variants, and molecular etiologies, nearly all rare diseases have no targeted therapeutics that can address their underlying molecular causes. Base editing (BE) and prime editing (PE), two newly described iterations of CRISPR-Cas9 genome editing, represent potential therapeutic strategies that could be used to precisely, efficiently, permanently, and safely correct patients' pathogenic variants and ameliorate disease sequelae. Unlike "standard" CRISPR-Cas9 genome editing, these technologies do not rely on double-strand break (DSB) formation, thus improving safety by decreasing the likelihood of undesired insertions and deletions (indels) at the target site. Here, we provide an overview of BE and PE, including their structures, mechanisms, and differences from standard CRISPR-Cas9 genome editing. We describe several examples of the use of BE and PE to improve rare and common disease phenotypes in preclinical models and human patients, with an emphasis on in vivo editing efficacy, safety, and delivery method. We also discuss recently developed delivery methods for these technologies that may be used in future clinical settings.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Terapia Genética/métodos , Fenótipo
10.
Nat Commun ; 14(1): 3451, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301931

RESUMO

Phenylketonuria (PKU), an autosomal recessive disorder caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene, results in the accumulation of blood phenylalanine (Phe) to neurotoxic levels. Current dietary and medical treatments are chronic and reduce, rather than normalize, blood Phe levels. Among the most frequently occurring PAH variants in PKU patients is the P281L (c.842C>T) variant. Using a CRISPR prime-edited hepatocyte cell line and a humanized PKU mouse model, we demonstrate efficient in vitro and in vivo correction of the P281L variant with adenine base editing. With the delivery of ABE8.8 mRNA and either of two guide RNAs in vivo using lipid nanoparticles (LNPs) in humanized PKU mice, we observe complete and durable normalization of blood Phe levels within 48 h of treatment, resulting from corrective PAH editing in the liver. These studies nominate a drug candidate for further development as a definitive treatment for a subset of PKU patients.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Camundongos , Animais , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Fenilcetonúrias/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina Hidroxilase/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Modelos Animais de Doenças
12.
Circ Genom Precis Med ; 16(3): 248-257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165871

RESUMO

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contribute to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest. METHODS: We analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell lines (n=166), as well as in an independent collection of primary liver tissues (n=96) to perform discovery of splicing quantitative trait loci (sQTLs). RESULTS: We observe that transcript splicing is highly cell type specific, and the genes that are differentially spliced between iPSCs and hepatocyte-like cells are enriched for metabolism pathway annotations. We identify 1384 hepatocyte-like cell sQTLs and 1455 iPSC sQTLs at a false discovery rate of <5% and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an hepatocyte-like cell expression quantitative trait locus or sQTL. Only 2 loci colocalize with both a sQTL and expression quantitative trait locus, indicating that sQTLs contribute information about genome-wide association studies loci that cannot be obtained by analysis of steady-state gene expression alone. CONCLUSIONS: These results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.


Assuntos
Processamento Alternativo , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Splicing de RNA , Locos de Características Quantitativas , Lipídeos
13.
Nat Commun ; 14(1): 2776, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188660

RESUMO

Lipid nanoparticles have demonstrated utility in hepatic delivery of a range of therapeutic modalities and typically deliver their cargo via low-density lipoprotein receptor-mediated endocytosis. For patients lacking sufficient low-density lipoprotein receptor activity, such as those with homozygous familial hypercholesterolemia, an alternate strategy is needed. Here we show the use of structure-guided rational design in a series of mouse and non-human primate studies to optimize a GalNAc-Lipid nanoparticle that allows for low-density lipoprotein receptor independent delivery. In low-density lipoprotein receptor-deficient non-human primates administered a CRISPR base editing therapy targeting the ANGPTL3 gene, the introduction of an optimized GalNAc-based asialoglycoprotein receptor ligand to the nanoparticle surface increased liver editing from 5% to 61% with minimal editing in nontargeted tissues. Similar editing was noted in wild-type monkeys, with durable blood ANGPTL3 protein reduction up to 89% six months post dosing. These results suggest that GalNAc-Lipid nanoparticles may effectively deliver to both patients with intact low-density lipoprotein receptor activity as well as those afflicted by homozygous familial hypercholesterolemia.


Assuntos
Hipercolesterolemia Familiar Homozigota , Nanopartículas , Animais , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fígado/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/metabolismo
14.
Adv Exp Med Biol ; 1396: 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36454456

RESUMO

This chapter summarizes the definition, classification, and function of genome editing and highlights the breakthroughs of genome editing in cardiovascular and metabolic diseases for disease modeling, diagnostics, and therapeutics, with a particular focus on clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated 9 (Cas9) technology as applied to nuclease editing, base editing, and epigenome editing.


Assuntos
Sistema Cardiovascular , Doenças Metabólicas , Humanos , Edição de Genes , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , Endonucleases , Epigenoma
15.
Cardiovasc Res ; 119(1): 79-93, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35388882

RESUMO

CRISPR technologies have progressed by leaps and bounds over the past decade, not only having a transformative effect on biomedical research but also yielding new therapies that are poised to enter the clinic. In this review, I give an overview of (i) the various CRISPR DNA-editing technologies, including standard nuclease gene editing, base editing, prime editing, and epigenome editing, (ii) their impact on cardiovascular basic science research, including animal models, human pluripotent stem cell models, and functional screens, and (iii) emerging therapeutic applications for patients with cardiovascular diseases, focusing on the examples of hypercholesterolaemia, transthyretin amyloidosis, and Duchenne muscular dystrophy.


Assuntos
Doenças Cardiovasculares , Distrofia Muscular de Duchenne , Animais , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Terapia Genética , Edição de Genes , Distrofia Muscular de Duchenne/genética , Sistemas CRISPR-Cas
17.
Nat Biomed Eng ; 6(11): 1272-1283, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35902773

RESUMO

The viral delivery of base editors has been complicated by their size and by the limited packaging capacity of adeno-associated viruses (AAVs). Typically, dual-AAV approaches based on trans-splicing inteins have been used. Here we show that, compared with dual-AAV systems, AAVs with size-optimized genomes incorporating compact adenine base editors (ABEs) enable efficient editing in mice at similar or lower doses. Single-AAV-encoded ABEs retro-orbitally injected in mice led to editing efficiencies in liver (66%), heart (33%) and muscle (22%) tissues that were up to 2.5-fold those of dual-AAV ABE8e, and to a 93% knockdown (on average) of human PCSK9 and of mouse Pcsk9 and Angptl3 in circulation, concomitant with substantial reductions of plasma cholesterol and triglycerides. Moreover, three size-minimized ABE8e variants, each compatible with single-AAV delivery, collectively offer compatibility with protospacer-adjacent motifs for editing approximately 82% of the adenines in the human genome. ABEs encoded within single AAVs will facilitate research and therapeutic applications of base editing by simplifying AAV production and characterization, and by reducing the dose required for the desired level of editing.


Assuntos
Dependovirus , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Dependovirus/genética , Pró-Proteína Convertase 9/genética , Edição de Genes , Adenina , Proteínas Semelhantes a Angiopoietina/genética
18.
Front Cardiovasc Med ; 9: 833171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242827

RESUMO

OBJECTIVE: Animal models suggest that BRCA1/2 mutations increase doxorubicin-induced cardiotoxicity risk but data in humans are limited. We aimed to determine whether germline BRCA1/2 mutations are associated with cardiac dysfunction in breast cancer survivors. METHODS: In a single-center cross-sectional study, stage I-III breast cancer survivors were enrolled according to three groups: (1) BRCA1/2 mutation carriers treated with doxorubicin; (2) BRCA1/2 mutation non-carriers treated with doxorubicin; and (3) BRCA1/2 mutation carriers treated with non-doxorubicin cancer therapy. In age-adjusted analysis, core-lab quantitated measures of echocardiography-derived cardiac function and cardiopulmonary exercise testing (CPET) were compared across the groups. A complementary in vitro study was performed to assess the impact of BRCA1 loss of function on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) survival following doxorubicin exposure. RESULTS: Sixty-seven women with mean (standard deviation) age of 50 (11) years were included. Age-adjusted left ventricular ejection fraction (LVEF) was lower in participants receiving doxorubicin regardless of BRCA1/2 mutation status (p = 0.03). In doxorubicin-treated BRCA1/2 mutation carriers and non-carriers, LVEF was lower by 5.4% (95% CI; -9.3, -1.5) and 4.8% (95% CI; -9.1, -0.5), respectively compared to carriers without doxorubicin exposure. No significant differences in VO2max were observed across the three groups (poverall = 0.07). Doxorubicin caused a dose-dependent reduction in viability of iPSC-CMs in vitro without differences between BRCA1 mutant and wild type controls (p > 0.05). CONCLUSIONS: BRCA1/2 mutation status was not associated with differences in measures of cardiovascular function or fitness. Our findings do not support a role for increased cardiotoxicity risk with BRCA1/2 mutations in women with breast cancer.

19.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981785

RESUMO

The rapid invention of genome-editing technologies over the past decade, which has already been transformative for biomedical research, has raised the tantalizing prospect of an entirely new therapeutic modality. Whereas the treatment of chronic cardiovascular diseases has heretofore entailed the use of chronic therapies that typically must be taken repeatedly and frequently for the remainder of the lifetime, genome editing will enable the development of "one-and-done" therapies with durable effects. This Review summarizes the variety of available genome-editing approaches, including nuclease editing, base editing, epigenome editing, and prime editing; illustrates how these various approaches could be implemented as novel therapies for cardiovascular diseases; and outlines a path from technology development to preclinical studies to clinical trials. Although this Review focuses on PCSK9 as an instructive example of the various genome-editing approaches under active investigation, the lessons learned will be broadly applicable to the treatment of a variety of diseases.


Assuntos
Doenças Cardiovasculares , Epigenoma , Edição de Genes , Pró-Proteína Convertase 9 , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Ensaios Clínicos como Assunto , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
20.
Diabetes ; 71(4): 677-693, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081256

RESUMO

Genome-wide association studies identified single nucleotide polymorphisms on chromosome 7 upstream of KLF14 to be associated with metabolic syndrome traits and increased risk for type 2 diabetes (T2D). The associations were more significant in women than in men. The risk allele carriers expressed lower levels of the transcription factor KLF14 in adipose tissues than nonrisk allele carriers. To investigate how adipocyte KLF14 regulates metabolic traits in a sex-dependent manner, we characterized high-fat diet-fed male and female mice with adipocyte-specific Klf14 deletion or overexpression. Klf14 deletion resulted in increased fat mass in female mice and decreased fat mass in male mice. Female Klf14-deficient mice had overall smaller adipocytes in subcutaneous fat depots but larger adipocytes in parametrial depots, indicating a shift in lipid storage from subcutaneous to visceral fat depots. They had reduced metabolic rates and increased respiratory exchange ratios consistent with increased use of carbohydrates as an energy source. Fasting- and isoproterenol-induced adipocyte lipolysis was defective in female Klf14-deficient mice, and concomitantly, adipocyte triglycerides lipase mRNA levels were downregulated. Female Klf14-deficient mice cleared blood triglyceride and nonesterified fatty acid less efficiently than wild-type. Finally, adipocyte-specific overexpression of Klf14 resulted in lower total body fat in female but not male mice. Taken together, consistent with human studies, adipocyte KLF14 deficiency in female but not in male mice causes increased adiposity and redistribution of lipid storage from subcutaneous to visceral adipose tissues. Increasing KLF14 abundance in adipocytes of females with obesity and T2D may provide a novel treatment option to alleviate metabolic abnormalities.


Assuntos
Adiposidade , Diabetes Mellitus Tipo 2 , Fatores de Transcrição Kruppel-Like , Metabolismo dos Lipídeos , Fatores Sexuais , Adipócitos/metabolismo , Adiposidade/genética , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...