Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 20(22): 8614-9, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11069970

RESUMO

Chronic alcohol consumption produces a painful peripheral neuropathy for which there is no reliably successful therapy, attributable to, in great part, a lack of understanding of the underlying mechanisms. We tested the hypothesis that neuropathic pain associated with chronic alcohol consumption is a result of abnormal peripheral nociceptor function. In rats maintained on a diet to simulate chronic alcohol consumption in humans, mechanical hyperalgesia was present by the fourth week and maximal at 10 weeks. Thermal hyperalgesia and mechanical allodynia were also present. Mechanical threshold of C-fibers in ethanol fed rats was lowered, and the number of action potentials during sustained stimulation increased. The hyperalgesia was acutely attenuated by intradermal injection of nonselective protein kinase C (PKC) or selective PKCepsilon inhibitors injected at the site of nociceptive testing. Western immunoblot analysis indicated a higher level of PKCepsilon in dorsal root ganglia from alcohol-fed rats, supporting a role for enhanced PKCepsilon second-messenger signaling in nociceptors contributing to alcohol-induced hyperalgesia.


Assuntos
Neuropatia Alcoólica/enzimologia , Gânglios Espinais/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Potenciais de Ação , Neuropatia Alcoólica/induzido quimicamente , Animais , Peso Corporal/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Ingestão de Energia/fisiologia , Etanol/administração & dosagem , Etanol/sangue , Etanol/toxicidade , Gânglios Espinais/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/induzido quimicamente , Masculino , Fibras Nervosas/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Estimulação Física , Proteína Quinase C-épsilon , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos
2.
J Biol Chem ; 273(43): 28486-95, 1998 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-9774478

RESUMO

Splicing of alternative exon 6 to invariant exons 2, 3, and 4 in acetylcholinesterase (AChE) pre-mRNA results in expression of the prevailing enzyme species in the nervous system and at the neuromuscular junction of skeletal muscle. The structural determinants controlling splice selection are examined in differentiating C2-C12 muscle cells by selective intron deletion from and site-directed mutagenesis in the Ache gene. Transfection of a plasmid lacking two invariant introns (introns II and III) within the open reading frame of the Ache gene, located 5' of the alternative splice region, resulted in alternatively spliced mRNAs encoding enzyme forms not found endogenously in myotubes. Retention of either intron II or III is sufficient to control the tissue-specific pre-mRNA splicing pattern prevalent in situ. Further deletions and branch point mutations revealed that upstream splicing, but not the secondary structure of AChE pre-mRNA, is the determining factor in the splice selection. In addition, deletion of the alternative intron between the splice donor site and alternative acceptor sites resulted in aberrant upstream splicing. Thus, selective splicing of AChE pre-mRNA during myogenesis occurs in an ordered recognition sequence in which the alternative intron influences the fidelity of correct upstream splicing, which, in turn, determines the downstream splice selection of alternative exons.


Assuntos
Acetilcolinesterase/genética , Processamento Alternativo , Íntrons , Músculo Esquelético/citologia , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Ligação Proteica , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transfecção
3.
Blood ; 90(11): 4602-9, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9373272

RESUMO

The human beta globin locus spans an 80-kb chromosomal region encompassing both the five expressed globin genes and the cis-acting elements that direct their stage-specific expression during ontogeny. Sequences proximal to the genes and in the locus control region, 60 kb upstream of the adult beta globin gene, are required for developmental regulation. Transgenic studies have shown that altering the structural organization of the locus disrupts the normal pattern of globin gene regulation. Procedures for introducing yeast artificial chromosomes (YACs) containing large genetic loci now make it possible to define the sequences required for stage-restricted gene expression in constructs that preserve the integrity of the beta globin locus. We demonstrate that independent YAC transgenic lines exhibit remarkably similar patterns of globin gene expression during development. The switch from gamma to beta globin predominant expression occurs between day 11.5 and 12.5 of gestation, with no more than twofold differences in human beta globin mRNA levels between lines. Human beta globin mRNA levels were twofold to fourfold lower than that of mouse betamaj, revealing potentially significant differences in the regulatory sequences of the two loci. These findings provide an important basis for studying regulatory elements within the beta globin locus.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Região de Controle de Locus Gênico , Adulto , Animais , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , Cromossomos Artificiais de Levedura , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos
4.
J Biol Chem ; 270(40): 23511-9, 1995 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-7559515

RESUMO

Acetylcholinesterase in man is encoded by a single gene, ACHE, located on chromosome 7q22. In this study, the transcription start sites and major DNA promoter elements controlling the expression of this gene have been characterized by structural and functional studies. Immediately upstream of the first untranslated exon of the gene are GC-rich sequences containing consensus binding sites for several transcription factors, including Sp1, EGR-1 and AP2. In vitro transcription studies and RNase protection analyses of mRNA isolated from human NT2/D1 teratocarcinoma cells reveal that two closely spaced transcription cap sites are located at a consensus initiator (Inr) element similar to that found in the terminal transferase gene. Transient transfection of mutant genes shows that removal of three bases of this initiator sequence reduces promoter activity by 98% in NT2/D1 cells. In vitro transcription studies and transient transfection of a series of 5' deletion mutants of the ACHE promoter linked to a luciferase reporter show an Sp1 site at -71 to be essential for promoter activity. Purified Sp1 protein protects this site from DNase cleavage during in vitro footprinting experiments. A conserved AP2 consensus binding site, located between the GC box elements and the Inr, is protected by recombinant AP2 protein in DNase footprinting experiments, induces a mobility shift with AP2 protein and AP2-containing cell extracts, and fosters inhibition of transcription by AP2 as measured by transient transfection in mouse and human cell lines and in in vitro transcription reactions. These results indicate that AP2 functions as a repressor of human ACHE and mouse Ache transcription.


Assuntos
Acetilcolinesterase/genética , Regulação Enzimológica da Expressão Gênica , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , DNA/genética , DNA/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Fator de Transcrição AP-2
5.
J Biol Chem ; 270(4): 1866-72, 1995 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-7829523

RESUMO

The increase in acetylcholinesterase expression during muscle differentiation from myoblasts to myotubes was shown previously to reflect primarily a greater stability of the messenger RNA (mRNA). Here, we investigate the regulation of the acetylcholinesterase gene during early determination of the muscle phenotype. (i) We employ myogenic transcription factors to transform non-muscle cells into myoblasts in order to assess the role of the myogenic transcription factors in this regulation. (ii) We analyze the Ache promoter region by deletion analysis, point mutagenesis, and gel mobility shift assays. The myogenic transcription factors do not accelerate transcription of the Ache gene in spite of the presence of E-boxes at -335 base pairs from the start of transcription and in the first intron, and they are not able to trigger stabilization of the Ache mRNA when constitutively expressed in 10T1/2 fibroblasts. A GC-rich region (at -105 to -59 base pairs from the start of transcription) containing overlapping binding sites for the transcription factors Sp1 and Egr-1 is essential for promoter activity. Mutation of the Sp1 sites dramatically reduces the promoter activity while mutation of the Egr-1 sites has little effect. Sp1 and Egr-1 compete for binding to overlapping sites and an increase in Egr-1 decreases the expression of the Ache gene.


Assuntos
Acetilcolinesterase/genética , Regulação Enzimológica da Expressão Gênica , Proteínas Imediatamente Precoces , Camundongos/genética , Músculos/citologia , Regiões Promotoras Genéticas , Transcrição Gênica , Células 3T3 , Acetilcolinesterase/biossíntese , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Núcleo Celular/metabolismo , Células Clonais , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce , Cinética , Dados de Sequência Molecular , Proteínas Musculares/biossíntese , Músculos/metabolismo , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Plasmídeos , RNA Mensageiro/biossíntese , Receptores Colinérgicos/biossíntese , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Dedos de Zinco
6.
Mol Gen Genet ; 243(6): 699-705, 1994 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-8028587

RESUMO

AceIJ29 and AceIJ40 are cold- and heat-sensitive variants of the gene coding for acetylcholinesterase in Drosophila melanogaster. In the homozygous condition, these mutations are lethal when animals are raised at restrictive temperatures, i.e., below 23 degrees C for AceIJ29 or above 25 degrees C for AceIJ40. The coding regions of the gene in these mutants were sequenced and mutations changing Ser374 to Phe in AceIJ29 and Pro75 to Leu in AceIJ40 were found. Acetylcholinesterases bearing these mutations were expressed in Xenopus oocytes and we found that these mutations decrease the secretion rate of the protein most probably by affecting its folding. This phenomenon is exacerbated at restrictive temperatures decreasing the amount of secreted acetylcholinesterase below the lethality threshold. In parallel, the substitution of the conserved Asp248 by an Asn residue completely inhibits the activity of the enzyme and its secretion, preventing the correct folding of the protein in a non-conditional manner.


Assuntos
Acetilcolinesterase/genética , Drosophila melanogaster/genética , Regulação Enzimológica da Expressão Gênica , Mutação Puntual , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Compartimento Celular , Clonagem Molecular , Temperatura Baixa , Sequência Conservada , Drosophila melanogaster/enzimologia , Temperatura Alta , Dados de Sequência Molecular , Oócitos/metabolismo , Fenótipo , Reação em Cadeia da Polimerase , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Xenopus/metabolismo
7.
Proc Natl Acad Sci U S A ; 91(13): 5922-6, 1994 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8016090

RESUMO

Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/genética , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Paraoxon/farmacologia , Mutação Puntual , Estrutura Secundária de Proteína , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carbaril/farmacologia , Clonagem Molecular , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Feminino , Inseticidas/farmacologia , Cinética , Malation/análogos & derivados , Malation/farmacologia , Modelos Moleculares , Oócitos/fisiologia , Propoxur/farmacologia , Torpedo , Xenopus
8.
Chem Biol Interact ; 87(1-3): 233-8, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8343979

RESUMO

Quantitative and qualitative changes of acetylcholinesterase can affect the sensitivity of insects to insecticides. First, the amount of acetylcholinesterase in the central nervous system is important in Drosophila melanogaster, flies which overexpress the enzyme are more resistant than wild-type flies. On the contrary, flies which express low levels of acetylcholinesterase are more susceptible. An overproduction of acetylcholinesterase outside the central nervous system also protects against organophosphate poisoning, that is, flies producing a soluble acetylcholinesterase, secreted in the haemolymph, are resistant to organophosphates. Second, resistance can also result from a qualitative modification of acetylcholinesterase. Four mutations have been identified in resistant strains: Phe115 to Ser, Ileu199 to Val, Gly303 to Ala and Phe368 to Tyr. Each of these mutations led to a different pattern of resistance and combinations between these mutations led to highly resistant enzymes.


Assuntos
Acetilcolinesterase/genética , Inibidores da Colinesterase/farmacologia , Drosophila melanogaster/enzimologia , Inseticidas/farmacologia , Compostos Organofosforados , Acetilcolinesterase/metabolismo , Animais , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Mutação Puntual
9.
Eur J Biochem ; 203(3): 513-9, 1992 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-1310468

RESUMO

In insects, acetylcholinesterase is mainly found in the central nervous system. It is expressed in the synapse where it hydrolyzes the neurotransmitter acetylcholine. Maturation of this protein involves several post-translational modifications. The precursor polypeptide is cut at three sites; the N-terminal signal peptide is removed, the C-terminal hydrophobic polypeptide is clipped off and replaced by a glycolipid anchor and the resulting peptide is cut into two polypeptides, corresponding to active subunits. Two of these active subunits are associated to form the final active glycosylated protein. We have expressed the protein via microinjection of an expression vector into Xenopus oocyte nuclei. When the complete cDNA is injected, the acetylcholinesterase formed is biochemically similar to the Drosophila-head acetylcholinesterase. However, the hydrophobic C-terminal peptide is not replaced by a glycolipid anchor. As a consequence, the enzyme is no longer externalized, the proteolytic cutting of the main peptide does not occur and a new polymerization form occurs. Although incompletely processed, this protein is enzymatically active. When a cDNA lacking the coding region of the C-terminal hydrophobic peptide is injected, the resulting acetylcholinesterase is hydrophilic, cleaved into two subunits and secreted into the incubation medium free of contaminants.


Assuntos
Acetilcolinesterase/metabolismo , Drosophila/enzimologia , Precursores Enzimáticos/metabolismo , Acetilcolinesterase/genética , Sequência de Aminoácidos , Animais , Autorradiografia , Clonagem Molecular , DNA/genética , Eletroforese em Gel de Poliacrilamida , Precursores Enzimáticos/genética , Microinjeções , Dados de Sequência Molecular , Oócitos , Fosfatidilinositol Diacilglicerol-Liase , Diester Fosfórico Hidrolases/metabolismo , Testes de Precipitina , Xenopus
10.
Neuroreport ; 3(1): 39-42, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1611033

RESUMO

Tyrosine 109 in the acetylcholinesterase sequence of Drosophila melanogaster corresponds to an aspartate in vertebrate cholinesterases. Mutation of this amino acid to a glycine in the human butyrylcholinesterase gives rise to the 'atypic' phenotype characterized by a reduced activity for charged compounds. We investigated the importance of tyrosine 109 in the Drosophila sequence by in vitro mutagenesis and its expression in the Xenopus oocyte. We show here that tyrosine 109 contributes to the conformation of the active site and the charge of the residue at position 109 is important for catalytic properties. Sensitivity of the enzyme to organophosphorus and carbamate compounds is modified depending on residues present in position 109, therefore this amino acid is a potential site of resistance for insects to insecticides.


Assuntos
Acetilcolinesterase/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Acetilcolinesterase/genética , Animais , Catálise , Inibidores da Colinesterase/farmacologia , DNA/metabolismo , Drosophila melanogaster , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Mutação , Conformação Proteica , Proteínas/química , Xenopus laevis
11.
J Biol Chem ; 267(3): 1695-700, 1992 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-1730712

RESUMO

Drosophila acetylcholinesterase (EC 3.1.1.7) is a 150-kDa glycoprotein anchored in plasmic membranes via a glycolipid. It is composed of two active subunits which are themselves made of two noncovalently linked polypeptides of 18 and 55 kDa resulting from the proteolysis of a single precursor of 75 kDa. Active Drosophila acetylcholinesterase can be expressed in Xenopus oocytes as an excreted protein. We have identified some of the amino acids essential in post-translational modifications of the protein by site-directed mutagenesis and expression of mutants in this system. The intersubunit disulfide bond involves cysteine at position 615. Cleavage of the 75-kDa precursor, as observed in Drosophila, originates from a hydrophilic peptide (in position 148 to 180) which does not exist in cholinesterase sequences from vertebrates. This cleavage is associated with excretion out of the cell. Drosophila acetylcholinesterase exhibits four effective sites of asparagine-linked glycosylation in positions 126, 174, 331, and 531. We show that glycosylations and dimerization protect the protein against proteolytic digestion. In contrast, none of these post-translational modifications significantly affects the activity of acetylcholinesterase or affinity for its substrate.


Assuntos
Acetilcolinesterase/genética , Drosophila melanogaster/enzimologia , Oócitos/fisiologia , Processamento de Proteína Pós-Traducional , Acetilcolinesterase/isolamento & purificação , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Drosophila melanogaster/genética , Eletroforese em Gel de Poliacrilamida , Endopeptidases/metabolismo , Feminino , Glicosilação , Humanos , Cinética , Substâncias Macromoleculares , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Mapeamento de Peptídeos , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência do Ácido Nucleico , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA