Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 40(3): 489-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38165524

RESUMO

In our study, we present an innovative method for the analysis and real-time monitoring of peracetic acid (PAA) formation within the near-UV/Vis (visible) wavelength region. PAA's absorption spectrum, influenced by its presence in a complex quaternary equilibrium mixture with hydrogen peroxide (H2O2), acetic acid, and water, lacks discernible peaks. This inherent complexity challenges conventional analytical techniques like Beer's law, which rely on absorption intensity as a foundation. To address this challenge, we introduce a novel approach that centers on the analysis of blue shifts in absorption wavelengths, particularly at an absorbance of 0.8 a.u. This method significantly enhances the precision of calibration curves for both diluted PAA and H2O2, unveiling an exponential correlation between wavelength and the logarithm of concentration for both components. Significantly, our approach allows for real-time and accurate measurements, especially during the dynamic PAA formation reaction. Our results exhibit excellent agreement with data obtained from Fourier-transform infrared (FT-IR) spectroscopy, validating the reliability of our method. It's noteworthy that under stable PAA concentration conditions (after 12 h of solution interaction), both traditional absorption method and our approach closely align with the FT-IR method. However, in dynamic scenarios (0-12 h), the absorption method exhibits higher error rates compared to our approach. Additionally, the increased concentration of a catalyst, sulfuric acid (H2SO4), significantly reduces the errors in both methods, a finding that warrants further exploration. In summary, our study not only advances our understanding of PAA and its spectral behavior but also introduces innovative and precise methods for determining PAA concentration in complex solutions. These advancements hold the potential to revolutionize the field of chemical analysis and spectroscopy.

2.
Phys Chem Chem Phys ; 25(42): 28885-28894, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853821

RESUMO

The products resulting from the reactions between atmospheric acids and SO3 have a catalytic effect on the formation of new particles in aerosols. However, the SO3 + HCl reaction in the gas-phase and at the air-water interface has not been considered. Herein, this reaction was explored exhaustively by using high-level quantum chemical calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. The quantum calculations show that the gas-phase reaction of SO3 + HCl is highly unlikely to occur under atmospheric conditions with a high energy barrier of 22.6 kcal mol-1. H2O and (H2O)2 play obvious catalytic roles in reducing the energy barrier of the SO3 + HCl reaction by over 18.2 kcal mol-1. The atmospheric lifetimes of SO3 show that the (H2O)2-assisted reaction dominates over the H2O-assisted reaction within the altitude range of 0-5 km, whereas the H2O-assisted reaction is more favorable within an altitude range of 10-50 km. BOMD simulations show that H2O-induced formation of the ClSO3-⋯H3O+ ion pair and HCl-assisted formation of the HSO4-⋯H3O+ ion pair were identified at the air-water interface. These routes followed a stepwise reaction mechanism and proceeded at a picosecond time scale. Interestingly, the formed ClSO3H in the gas phase has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters within 40 ns simulation time, while the interfacial ClSO3- and H3O+ can attract H2SO4, NH3, and HNO3 for particle formation from the gas phase to the water surface. Thus, this work will not only help in understanding the SO3 + HCl reaction driven by water molecules in the gas-phase and at the air-water interface, but it will also provide some potential routes of aerosol formation from the reaction between SO3 and inorganic acids.

3.
Phys Chem Chem Phys ; 24(30): 18205-18216, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866623

RESUMO

Herein, the reaction mechanisms and kinetics for the HO2 + SO3 → HOSO2 + 3O2 reaction catalyzed by a water monomer, a water dimer and small clusters of sulfuric acid have been studied theoretically by quantum chemical methods and the Master Equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) rate calculations. The calculated results show that when H2O is introduced into the HO2 + SO3 reaction, it not only enhances the stability of the reactant complexes by 9.0 kcal mol-1 but also reduces the energy of the transition state by 8.7 kcal mol-1. As compared with H2O, catalysts (H2O)2, H2SO4, H2SO4⋯H2O and (H2SO4)2 are more effective energetically, which not only results from a higher binding energy of 21.3-26.0 kcal mol-1 for the reactant complexes but also from a reduction of the energy of the transition states by 8.6-17.2 kcal mol-1. Effective rate constant calculations show that, as compared with H2O, catalysts (H2O)2, H2SO4, H2SO4⋯H2O and (H2SO4)2 can never become more efficient catalysts within the altitude range of 0-15 km due to their relatively lower concentrations. Besides, at 0 km altitude, the enhancement factor for the H2O and (k'WD1/ktot) (H2O)2-assisted HO2 + SO3 reaction within the temperature range of 280-320 K was respectively calculated to be 0.31%-0.34% and 0.16%-0.27%, while the corresponding enhancement factor of H2O and (H2O)2 at higher altitudes of 5-15 km was respectively found only 0.002%-0.12% and 0.00001%-0.022%, indicating that the contributions of H2O and (H2O)2 are not apparent in the gas-phase reaction of HO2 with SO3 especially at higher altitude. Overall, the present work will give a new insight into how a water monomer, a water dimer and small clusters of sulfuric acid catalyze the HO2 + SO3 → HOSO2 + 3O2 reaction.

4.
Phys Chem Chem Phys ; 24(8): 4966-4977, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35141735

RESUMO

NH2SO3H can directly participate in H2SO4-(CH3)2NH-based cluster formation, and thereby substantially enhance the cluster formation rate. Herein, the reaction mechanisms and kinetics for the formation of NH2SO3H from the hydrolysis of HNSO2 without and with neutral (H2O, (H2O)2, and (H2O)3), basic (NH3 and CH3NH2), and acidic (HCOOH, H2SO4, H2SO4⋯H2O, and (H2SO4)2) catalysts were studied theoretically at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311+G(2df,2pd) level. The calculated results showed that neutral, basic, and acidic catalysts decrease the energy barrier by over 18.1 kcal mol-1; meanwhile, the product formation of NH2SO3H was more strongly bonded to neutral, basic, and acidic catalysts than to the reactants HNSO2 and H2O. This reveals that the reported neutral, basic, and acidic catalysts promote the formation of NH2SO3H from the hydrolysis of HNSO2 both kinetically and thermodynamically. Kinetic calculations using the master equation showed that (H2O)2 (100% RH) dominate over the other catalysts within the range of 0-10 km altitudes and 230-320 K with its rate ratio larger by at least 2.98 times, whereas HCOOH (3.2 × 109 molecules cm-3) is the most favorable catalysts at 15 km altitude in the troposphere. Overall, the present results will provide a definitive example that neutral, basic, and acidic catalysts have important influences on atmospheric reactions.

5.
J Phys Chem A ; 125(24): 5406-5422, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34128665

RESUMO

The thermal unimolecular decomposition of 2-methyltetrahydrofuran (2-MTHF) was studied behind reflected shock waves in a single-pulse shock tube over the temperature range of 1179-1361 K and pressure range of 9-17 atm. Methane, ethylene, ethane, 1,3-butadiene, propylene, acetaldehyde, and acetylene were identified as products in the decomposition of 2-MTHF. A reaction scheme was proposed to explain the mechanism for the observed products. The experimentally determined rate coefficients were best fit to an Arrhenius expression for the overall decomposition and is represented as ktotalexp(1179-1361 K) = (3.23 ± 0.59) × 1011 s-1 exp(-51.3 ± 1.4 kcal mol-1/RT). Quantum chemistry methods were used to calculate the energetics and kinetics of various possible unimolecular dissociation pathways involved in the thermal decomposition of 2-MTHF. The initial decomposition of 2-MTHF occurs predominantly via ring-methyl (C-CH3) single bond fission, leading to the formation of tetrahydrofuran (C4H7O) radical, and methyl radical was found to be the major reaction compared to all the possible initial bond fission, ring opening, and molecular elimination channels. The temperature-dependent rate coefficients for the unimolecular dissociation of 2-MTHF were calculated using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory in combination with the CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ level of electronic structure calculations over the temperature range of 800-1500 K. The computed high-pressure limiting rate coefficients for the initial decomposition of 2-MTHF through C-CH3 single bond fission channel were found to be ∼2 times higher in the temperatures between 800 and 900 K, and above this temperature, they agree well with the values reported in the literature.

6.
Phys Chem Chem Phys ; 23(22): 12749-12760, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34041511

RESUMO

The hydrolysis reaction of CH2OO with water and water clusters is believed to be a dominant sink for the CH2OO intermediate in the atmosphere. However, the favorable route for the hydrolysis of CH2OO with water clusters is still unclear. Here global minimum searching using the Tsinghua Global Minimum program has been introduced to find the most stable geometry of the CH2OO(H2O)n (n = 1-4) complex firstly. Then, based on these stable complexes, favorable hydrolysis of CH2OO with (H2O)n (n = 1-4) has been investigated using the quantum chemical method of CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2d,2p) and canonical variational transition state theory with small curvature tunneling. The calculated results have revealed that, although the contribution of CH2OO + (H2O)2 is the most obvious in the hydrolysis of CH2OO with (H2O)n (n = 1-4), the hydrolysis of CH2OO with (H2O)3 is not negligible in atmospheric gas-phase chemistry as its rate is close to the rate of the CH2OO + H2O reaction. The calculated results also show that, in a clean atmosphere, the CH2OO + (H2O)n (n = 1-2) reaction competes well with the CH2OO + SO2 reaction at 298 K when the concentrations of (H2O)n (n = 1-2) range from 20% relative humidity (RH) to 100% RH, and SO2 is 2.46 × 1011 molecules per cm3. Meanwhile, when the RH is higher than 40%, it is a new prediction that the CH2OO + (H2O)3 reaction can also compete well with the CH2OO + SO2 reaction at 298 K. Besides, Born-Oppenheimer molecular dynamics simulation results show that all the favorable channels of the CH2OO + (H2O)n (n = 1-3) reaction cannot react on a time scale of 100 ps in the NVT simulation. However, the NVE simulation results show that the CH2OO + (H2O)3 reaction can be finished well at 8.5 ps, indicating that the gas phase reaction of CH2OO + (H2O)3 is not negligible in the atmosphere. Overall, the present results have provided a definitive example of how the favorable hydrolysis of important atmospheric species with (H2O)n (n = 1-4) takes place, which will stimulate one to consider the favorable hydrolysis of water and water clusters with other Criegee intermediates and other important atmospheric species.

7.
Phys Chem Chem Phys ; 23(10): 6098-6106, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683243

RESUMO

Photodissociation of di- and tri-halogenated methanes including CH2BrCl and CHBr2Cl at 248 nm was investigated using cavity ringdown absorption spectroscopy (CRDS). The spectra of the BrCl(v'' = 2, 3) and Br2(v'' = 1, 2) fragments were probed over the wavelength range of 594.5-596 nm in the B3Π+0u ← X1Σ+g and B3Π (0+) ← X1Σ+ transitions, respectively. Their corresponding spectra were simulated for assignment of rotational lines at a given vibrational level. The quantum yields for Br2 eliminated from CHBr2Cl and BrCl from CH2BrCl were determined to be 0.048 ± 0.018 and 0.037 ± 0.014, respectively. The photodissociation of CHBr2Cl yielded only the Br2 fragment, but not the BrCl fragment in the experiments. An ab initio theoretical method based on the CCSD(T)//B3LYP/6-311g(d,p) level was employed to evaluate the potential energy surface for the dissociation pathways to produce Br2 and BrCl from CHBr2Cl, which encountered a transition state barrier of 445 and 484 kJ mol-1, respectively. The corresponding RRKM rate constants were calculated to show that the branching ratio of (Br2/BrCl) is ∼20. The BrCl spectrum is expected to be obscured by the much larger Br2 spectrum, explaining why BrCl fragments cannot be detected in the photolysis of CHBr2Cl.

8.
Phys Chem Chem Phys ; 21(26): 13943-13949, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30137071

RESUMO

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v'' = 0, 1, and 2 levels are obtained with a population ratio of 1 : (0.58 ± 0.10) : (0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...