Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 28(11): 1000-1006, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33420580

RESUMO

OBJECTIVE: To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism. METHODS: A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/ß-catenin pathway (Wnt3, LRP5, ß-catenin, c-Myc, LRG5 and CD44). RESULTS: BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/ß -catenin mediators such as Wnt3, LRP5, ß-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01). CONCLUSIONS: BBD attenuates the adverse effects induced by 5-FU via Wnt/ß-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.


Assuntos
Antineoplásicos , Mucosite , Animais , Masculino , Camundongos , Antineoplásicos/uso terapêutico , beta Catenina/metabolismo , Diarreia/tratamento farmacológico , Fluoruracila/farmacologia , Mucosa Intestinal , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Pentobarbital/metabolismo , Pentobarbital/farmacologia , Pentobarbital/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Solução Salina
2.
Microb Pathog ; 162: 105361, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34919993

RESUMO

Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.


Assuntos
Hipertensão , MicroRNAs , Enzima de Conversão de Angiotensina 2 , Apelina , Humanos , Hipertensão/genética , MicroRNAs/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...