Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(1): H155-H171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459446

RESUMO

On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.


Assuntos
Células Endoteliais , Vasos Linfáticos , Ratos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Inflamação/metabolismo , Radiação Ionizante , Edema/metabolismo
2.
Analyst ; 147(13): 2953-2965, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35667121

RESUMO

The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca2+]i. Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca2+]i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca2+]i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC-LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca2+]i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences.


Assuntos
Cálcio , Células Endoteliais , Cálcio/metabolismo , Sinalização do Cálcio , Técnicas de Cocultura , Mecanotransdução Celular , Células Musculares/metabolismo , Fluxo Pulsátil
3.
Front Pharmacol ; 13: 848088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355722

RESUMO

Obesity and metabolic syndrome pose a significant risk for developing cardiovascular disease and remain a critical healthcare challenge. Given the lymphatic system's role as a nexus for lipid absorption, immune cell trafficking, interstitial fluid and macromolecule homeostasis maintenance, the impact of obesity and metabolic disease on lymphatic function is a burgeoning field in lymphatic research. Work over the past decade has progressed from the association of an obese phenotype with Prox1 haploinsufficiency and the identification of obesity as a risk factor for lymphedema to consistent findings of lymphatic collecting vessel dysfunction across multiple metabolic disease models and organisms and characterization of obesity-induced lymphedema in the morbidly obese. Critically, recent findings have suggested that restoration of lymphatic function can also ameliorate obesity and insulin resistance, positing lymphatic targeted therapies as relevant pharmacological interventions. There remain, however, significant gaps in our understanding of lymphatic collecting vessel function, particularly the mechanisms that regulate the spontaneous contractile activity required for active lymph propulsion and lymph return in humans. In this article, we will review the current findings on lymphatic architecture and collecting vessel function, including recent advances in the ionic basis of lymphatic muscle contractile activity. We will then discuss lymphatic dysfunction observed with metabolic disruption and potential pathways to target with pharmacological approaches to improve lymphatic collecting vessel function.

4.
Lab Chip ; 22(1): 121-135, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34850797

RESUMO

The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes.


Assuntos
Células Endoteliais , Vasos Linfáticos , Técnicas de Cocultura , Células Musculares , Contração Muscular
5.
Methods Mol Biol ; 2319: 137-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331251

RESUMO

Lymphatic muscle cells (LMCs), with unique characteristics resembling a combination of both cardiac and smooth muscle cells, play an essential role in the spontaneous contraction of the lymphatic vessels to pump fluid forward. However, our understanding of the more detailed molecular phenotypes of LMCs is limited. Here, we described a method to isolate the LMCs from rat mesentery and then culture the cells in vitro, which will serve a lot more molecular biology study of LMCs and significantly improve our knowledge about the unique characteristics of LMCs.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Dissecação/métodos , Mesentério/citologia , Células Musculares/citologia , Animais , Imunofluorescência , Células Musculares/metabolismo , Ratos
6.
Methods Mol Biol ; 2319: 153-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331253

RESUMO

Pathological alterations of lymphatic structure and function interfere with lymph transport, resulting in a wide range of clinical disorders that include edema, tissue inflammation, and metabolic syndromes. Mesentery contains abundant lymphatic vessels and plays an important role in transporting absorbed lipid from the intestine. In this manuscript, we describe a whole-mount staining method on isolated mouse mesentery with VEGFR3, Prox1, and Lyve1 antibodies to visualize the morphology of lymphatic vessels.


Assuntos
Linfangiogênese , Vasos Linfáticos/metabolismo , Mesentério/citologia , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Animais , Embrião de Mamíferos/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Mesentério/metabolismo , Camundongos , Proteínas Supressoras de Tumor/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Sci Rep ; 10(1): 12320, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704072

RESUMO

The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.


Assuntos
Vasos Linfáticos/patologia , Síndrome Metabólica/enzimologia , Contração Muscular , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tecido Adiposo/efeitos dos fármacos , Aminoquinolinas/farmacologia , Animais , Benzamidas/farmacologia , Composição Corporal/efeitos dos fármacos , Cardiomegalia/patologia , Dieta , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Resistência à Insulina , Vasos Linfáticos/efeitos dos fármacos , Masculino , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Tapsigargina/farmacologia
8.
PLoS One ; 15(7): e0230092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716937

RESUMO

Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.


Assuntos
Vasos Linfáticos/patologia , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Modelos Logísticos , Vasos Linfáticos/metabolismo , Aprendizado de Máquina , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Análise de Componente Principal , Prognóstico , Risco
9.
Biomed Pharmacother ; 107: 1591-1600, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257377

RESUMO

The role of lymphatic vessels in myocarditis is largely unknown, while it has been shown to play a key role in other inflammatory diseases. We aimed to investigate the role of lymphatic vessels in myocarditis using in vivo model induced with Theiler's murine encephalomyelitis virus (TMEV) and in vitro model with rat cardiac lymphatic muscle cells (RCLMC). In the TMEV model, we found that upregulation of a set of inflammatory mediator genes, including interleukin (IL)-1ß, tumor necrosis factor (TNF)-αand COX-2 were associated with disease activity. Thus, using in vitro collagen gel contraction assays, we decided to clarify the role(s) of these mediators by testing contractility of RCLMC in response to IL-1ß and TNF-α individually and in combination, in the presence or absence of: IL-1 receptor antagonist (Anakinra); cyclooxygenase (COX) inhibitors inhibitors (TFAP, diclofenac and DuP-697). IL-1ß impaired RCLMC contractility dose-dependently, while co-incubation with both IL-1ß and TNF-α exhibited synergistic effects in decreasing RCLMC contractility with increased COX-2 expression. Anakinra maintained RCLMC contractility; Anakinra blocked the mobilization of COX-2 induced by IL-1ß with or without TNF-α. COX-2 inhibition blocked the IL-1ß-mediated decrease in RCLMC contractility. Mechanistically, we found that IL-1ß increased prostaglandin (PG) E2 release dose-dependently, while Anakinra blocked IL-1ß mediated PGE2 release. Using prostaglandin E receptor 4 (EP4) receptor antagonist, we demonstrated that EP4 receptor blockade maintained RCLMC contractility following IL-1ß exposure. Our results indicate that IL-1ß reduces RCLMC contractility via COX-2/PGE2 signaling with synergistic cooperation by TNF-α. These pathways may help provoke inflammatory mediator accumulation within the heart, driving progression from acute myocarditis into dilated cardiomyopathy.


Assuntos
Interleucina-1beta/metabolismo , Células Musculares/metabolismo , Miocardite/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/genética , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Contração Muscular/fisiologia , Miocardite/genética , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
10.
Microcirculation ; 25(7): e12492, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30025187

RESUMO

OBJECTIVE: Lymphatic vessel dysfunction and increased lymph leakage have been directly associated with several metabolic diseases. However, the underlying cellular mechanisms causing lymphatic dysfunction have not been determined. Aberrant insulin signaling affects the metabolic function of cells and consequently impairs tissue function. We hypothesized that insulin resistance in LECs decreases eNOS activity, disrupts barrier integrity increases permeability, and activates mitochondrial dysfunction and pro-inflammatory signaling pathways. METHODS: LECs were treated with insulin and/or glucose to determine the mechanisms leading to insulin resistance. RESULTS: Acute insulin treatment increased eNOS phosphorylation and NO production in LECs via activation of the PI3K/Akt signaling pathway. Prolonged hyperglycemia and hyperinsulinemia induced insulin resistance in LECs. Insulin-resistant LECs produced less NO due to a decrease in eNOS phosphorylation and showed a significant decrease in impedance across an LEC monolayer that was associated with disruption in the adherence junctional proteins. Additionally, insulin resistance in LECs impaired mitochondrial function by decreasing basal-, maximal-, and ATP-linked OCRs and activated NF-κB nuclear translocation coupled with increased pro-inflammatory signaling. CONCLUSION: Our data provide the first evidence that insulin resistance disrupts endothelial barrier integrity, decreases eNOS phosphorylation and mitochondrial function, and activates inflammation in LECs.


Assuntos
Endotélio Linfático/metabolismo , Resistência à Insulina , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Endotélio Linfático/patologia , Glucose/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Insulina/farmacologia , Junções Intercelulares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
11.
Circ Res ; 122(8): 1094-1101, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475981

RESUMO

RATIONALE: Hypertension is associated with renal infiltration of activated immune cells; however, the role of renal lymphatics and immune cell exfiltration is unknown. OBJECTIVE: We tested the hypotheses that increased renal lymphatic density is associated with 2 different forms of hypertension in mice and that further augmenting renal lymphatic vessel expansion prevents hypertension by reducing renal immune cell accumulation. METHODS AND RESULTS: Mice with salt-sensitive hypertension or nitric oxide synthase inhibition-induced hypertension exhibited significant increases in renal lymphatic vessel density and immune cell infiltration associated with inflammation. Genetic induction of enhanced lymphangiogenesis only in the kidney, however, reduced renal immune cell accumulation and prevented hypertension. CONCLUSIONS: These data demonstrate that renal lymphatics play a key role in immune cell trafficking in the kidney and blood pressure regulation in hypertension.


Assuntos
Hipertensão/prevenção & controle , Rim/imunologia , Linfangiogênese , Vasos Linfáticos/fisiopatologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Proteínas de Ligação ao Cálcio , Movimento Celular , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Rim/fisiopatologia , Linfangiogênese/genética , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , NG-Nitroarginina Metil Éster/toxicidade , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Especificidade de Órgãos , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Células Th1/imunologia , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Fator D de Crescimento do Endotélio Vascular/biossíntese , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Epilepsy Res ; 138: 71-80, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29096132

RESUMO

Extracellular matrix protein-integrin interaction on neurons plays an important role in the development of neuroplasticity in the brain. However, the role of fibronectin-integrin signaling in epilepsy is elusive. Here, we examined the functional role of fibronectin-integrin signaling by utilizing a combination approach involving atomic force microscopy (AFM), immunocytochemistry, and pharmacology in epileptic mouse dentate gyrus granule cells (DGGCs). There was marked increase in the fibronectin receptor α5ß1-integrin staining intensity in DGGCs in epileptic mice. In the AFM study, the unbinding force and binding probability between the fibronectin-coated AFM probe and the membrane integrins were significantly reduced; while the cell stiffness was strikingly increased in epileptic DGGCs. Pretreatment with α5ß1-integrin monoclonal antibody partially reversed this membrane dysfunction. In patch-clamp recordings, fibronectin significantly inhibited GABA current, while RGD, which is known to disrupt fibronectin-integrin-dependent cell adhesive events, strikingly enhanced GABA tonic currents in DGGCs in hippocampal slices. The α5ß1-integrin antibody significantly reduced 4-aminopyridine-induced epileptiform discharges in brain slices. In systemic behavioral studies, susceptibility to hippocampus kindling epileptogenesis was significantly attenuated in mice treated with RGD or ß1-integrin antibody. These pilot studies provide new insights on the functional role of integrin receptor signaling in epileptogenesis and may help identify novel targets for the prevention and treatment of epilepsy.


Assuntos
Epilepsia/patologia , Fibronectinas/metabolismo , Integrina alfa6beta1/metabolismo , Microscopia de Força Atômica , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fibronectinas/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Integrina alfa6beta1/imunologia , Ácido Cinurênico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
13.
Eur J Pharmacol ; 811: 93-100, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28551013

RESUMO

Nomilin is a bitter compound present in citrus and has been demonstrated as useful for various disease preventions through anti-proliferative, anti-inflammatory, and pro-apoptotic activities. Although in vitro disease models have shown that certain limonoids in the p38 mitogen-activated protein kinase signal cascade, the downstream signaling pathways remain unclear. In this study, the effects of nomilin on the proliferation and apoptotic pathways of human aortic smooth muscle cells (HASMCs) that forms the basis of progression of atherosclerotic diseases and restenosis was tested for the first time. The cellular uptake level and stability of nomilin were determined by high-performance liquid chromatography and high-resolution mass spectra. Pretreatment of HASMCs with nomilin stimulated extrinsic caspase-8, intrinsic caspase-9, and apoptotic caspase-3 and resulted in significant inhibition of TNF-α-induced proliferation. Additionally, results showed a decreased ratio of anti-apoptotic Bcl-2 protein to pro-apoptotic Bax (Bcl2/Bax), indicating mitochondrial dysfunction consistent with apoptosis. Furthermore, nomilin significantly decreased the phosphorylation of IκBα, an inhibitor of NF-κB and subsequently, reduced the downstream inflammatory signaling in TNF-α treated HASMCs. Our findings indicate that the anti-proliferative activity of nomilin on TNF-α-induced HASMCs results from apoptosis through a mitochondrial-dependent pathway and suppression of inflammatory signaling mediated through NF-κB.


Assuntos
Aorta/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Benzoxepinas/farmacologia , Citrus/química , Quinase I-kappa B/antagonistas & inibidores , Limoninas/farmacologia , Músculo Liso Vascular/citologia , Fator de Necrose Tumoral alfa/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/farmacologia
14.
FASEB J ; 31(7): 2744-2759, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28298335

RESUMO

Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.


Assuntos
Hiperglicemia/induzido quimicamente , Hiperinsulinismo/induzido quimicamente , Resistência à Insulina , Insulina/efeitos adversos , Vasos Linfáticos/metabolismo , Contração Muscular/fisiologia , Animais , Glicemia , Metabolismo Energético , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Inflamação/metabolismo , Vasos Linfáticos/fisiopatologia , Masculino , Músculo Liso/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
15.
Microcirculation ; 23(7): 558-570, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588380

RESUMO

OBJECTIVE: The intrinsic lymphatic pump is critical to proper lymph transport and is impaired in models of the MetSyn. Lymphatic contractile inhibition under inflammatory conditions has been linked with elevated NO production by activated myeloid-derived cells. Hence we hypothesized that inhibition of the MLV pump function in MetSyn animals was dependent on NO and was associated with altered macrophage recruitment and polarization within the MLV. METHODS: We used a high fructose-fed rat model of MetSyn. Macrophage polarization was determined by whole mount immunofluorescence in mesenteric neurovascular bundles based on expression of CD163, CD206, and MHCII. We also utilized isolated vessel isobaric preparations to determine the role for elevated NO production in the inhibition of MLV contractility. Both LECs and LMCs were used to assess the cytokines and chemokines to test how the lymphatic cells response to inflammatory conditions. RESULTS: Data demonstrated a greater accumulation of M1-skewed (CD163+ MHCII+ ) macrophages that were observed both within the perivascular adipose tissue and invested along the lymphatic vessels in MetSyn rats when compared to control rats. LECs and LMCs basally express the macrophage maturation polarization cytokines monocyte colony-stimulating factor and dramatically up regulate the M1 promoting cytokine granulocyte/monocyte colony-stimulating factor in response to lipopolysaccharide stimulation. MetSyn MLVs exhibited altered phasic contraction frequency. Incubation of MetSyn MLVs with LNAME or Glib had a partial restoration of lymphatic contraction frequency. CONCLUSION: The data presented here provide the first evidence for a correlation between alterations in macrophage status and lymphatic dysfunction that is partially mediated by NO and KATP channel in MetSyn rats.


Assuntos
Vasos Linfáticos/fisiologia , Tecido Linfoide/citologia , Macrófagos/metabolismo , Mesentério/citologia , Síndrome Metabólica/imunologia , Contração Muscular/imunologia , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Quimiocinas/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/análise , Imunofenotipagem , Lectinas Tipo C/análise , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/análise , Síndrome Metabólica/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Óxido Nítrico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/análise
16.
Front Aging Neurosci ; 8: 88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199735

RESUMO

Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been incrementally employed in living cells including the nervous system. AFM is a unique technique that directly measures functional information at a nanoscale resolution. In addition to its ability to acquire detailed 3D imaging, the AFM probe permits quantitative measurements on the structure and function of the intracellular components such as cytoskeleton, adhesion force and binding probability between membrane receptors and ligands coated in the AFM probe, as well as the cell stiffness. Here we describe an optimized AFM protocol and its application for analysis of membrane plasticity and mechanical dynamics of individual hippocampus neurons in mice with chronic epilepsy. The unbinding force and binding probability between ECM, fibronectin-coated AFM probe and membrane integrin were strikingly lower in dentate gyrus granule cells in epilepsy. Cell elasticity, which represents changes in cytoskeletal reorganization, was significantly increased in epilepsy. The fibronectin-integrin binding probability was prevented by anti-α5ß1 integrin. Thus, AFM is a unique nanotechnique that allows progressive functional changes in neuronal membrane plasticity and mechanotransduction in epilepsy and related brain disorders.

17.
Am J Physiol Heart Circ Physiol ; 310(3): H385-93, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637560

RESUMO

Shear-dependent inhibition of lymphatic thoracic duct (TD) contractility is principally mediated by nitric oxide (NO). Endothelial dysfunction and poor NO bioavailability are hallmarks of vasculature dysfunction in states of insulin resistance and metabolic syndrome (MetSyn). We tested the hypothesis that flow-dependent regulation of lymphatic contractility is impaired under conditions of MetSyn. We utilized a 7-wk high-fructose-fed male Sprague-Dawley rat model of MetSyn and determined the stretch- and flow-dependent contractile responses in an isobaric ex vivo TD preparation. TD diameters were tracked and contractile parameters were determined in response to different transmural pressures, imposed flow, exogenous NO stimulation by S-nitro-N-acetylpenicillamine (SNAP), and inhibition of NO synthase (NOS) by l-nitro-arginine methyl ester (l-NAME) and the reactive oxygen species (ROS) scavenging molecule 4-hydroxy-tempo (tempol). Expression of endothelial NO synthase (eNOS) in TD was determined using Western blot. Approximately 25% of the normal flow-mediated inhibition of contraction frequency was lost in TDs isolated from MetSyn rats despite a comparable SNAP response. Inhibition of NOS with l-NAME abolished the differences in the shear-dependent contraction frequency regulation between control and MetSyn TDs, whereas tempol did not restore the flow responses in MetSyn TDs. We found a significant reduction in eNOS expression in MetSyn TDs suggesting that diminished NO production is partially responsible for impaired flow response. Thus our data provide the first evidence that MetSyn conditions diminish eNOS expression in TD endothelium, thereby affecting the flow-mediated changes in TD lymphatic function.


Assuntos
Endotélio Linfático/metabolismo , Síndrome Metabólica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ducto Torácico/metabolismo , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Endotélio Linfático/efeitos dos fármacos , Endotélio Linfático/fisiopatologia , Inibidores Enzimáticos/farmacologia , Masculino , Síndrome Metabólica/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Penicilamina/análogos & derivados , Penicilamina/farmacologia , Fluxo Pulsátil/efeitos dos fármacos , Fluxo Pulsátil/fisiologia , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Ducto Torácico/efeitos dos fármacos , Ducto Torácico/fisiopatologia
18.
Am J Physiol Heart Circ Physiol ; 309(12): H2042-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453331

RESUMO

Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction.


Assuntos
Polaridade Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Doenças Linfáticas/induzido quimicamente , Vasos Linfáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mesentério/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Quimiocinas/biossíntese , Citocinas/biossíntese , Imunidade Inata/efeitos dos fármacos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Linfáticas/patologia , Vasos Linfáticos/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Ratos , Ratos Sprague-Dawley
19.
Am J Physiol Cell Physiol ; 309(10): C680-92, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26354749

RESUMO

The lymphatics have emerged as critical players in the progression and resolution of inflammation. The goal of this study was to identify specific microRNAs (miRNAs) that regulate lymphatic inflammatory processes. Rat mesenteric lymphatic endothelial cells (LECs) were exposed to the proinflammatory cytokine tumor necrosis factor-α for 2, 24, and 96 h, and miRNA profiling was carried out by real-time PCR arrays. Our data demonstrate a specific set of miRNAs that are differentially expressed (>1.8-fold and/or P < 0.05) in LECs in response to tumor necrosis factor-α and are involved in inflammation, angiogenesis, endothelial-mesenchymal transition, and cell proliferation and senescence. We further characterized the expression of miRNA 9 (miR-9) that was induced in LECs and in inflamed rat mesenteric lymphatics. Our results showed that miR-9 overexpression significantly repressed NF-κB expression and, thereby, suppressed inflammation but promoted LEC tube formation, as well as expression of the prolymphangiogenic molecules endothelial nitric oxide synthase and VEGF receptor type 3. LEC viability and proliferation and endothelial-mesenchymal transition were also significantly induced by miR-9. This study provides the first evidence of a distinct profile of miRNAs associated with LECs during inflammation. It also identifies the critical dual role of miR-9 in fine-tuning the balance between lymphatic inflammatory and lymphangiogenic pathways.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Linfangiogênese/fisiologia , MicroRNAs/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Linfangiogênese/genética , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Circ Heart Fail ; 8(3): 595-604, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740838

RESUMO

BACKGROUND: Mammalian hearts exhibit positive inotropic responses to ß-adrenergic stimulation as a consequence of protein kinase A-mediated phosphorylation or as a result of increased beat frequency (the Bowditch effect). Several membrane and myofibrillar proteins are phosphorylated under these conditions, but the relative contributions of these to increased contractility are not known. Phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) by protein kinase A accelerates the kinetics of force development in permeabilized heart muscle, but its role in vivo is unknown. Such understanding is important because adrenergic responsiveness of the heart and the Bowditch effect are both depressed in heart failure. METHODS AND RESULTS: The roles of cMyBP-C phosphorylation were studied using mice in which either WT or nonphosphorylatable forms of cMyBP-C [ser273ala, ser282ala, ser302ala: cMyBP-C(t3SA)] were expressed at similar levels on a cMyBP-C null background. Force and [Ca(2+)]in measurements in isolated papillary muscles showed that the increased force and twitch kinetics because increased pacing or ß1-adrenergic stimulation were nearly absent in cMyBP-C(t3SA) myocardium, even though [Ca(2+)]in transients under each condition were similar to WT. Biochemical measurements confirmed that protein kinase A phosphorylated ser273, ser282, and ser302 in WT cMyBP-C. In contrast, CaMKIIδ, which is activated by increased pacing, phosphorylated ser302 principally, ser282 to a lesser degree, and ser273 not at all. CONCLUSIONS: Phosphorylation of cMyBP-C increases the force and kinetics of twitches in living cardiac muscle. Further, cMyBP-C is a principal mediator of increased contractility observed with ß-adrenergic stimulation or increased pacing because of protein kinase A and CaMKIIδ phosphorylations of cMyB-C.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Estimulação Cardíaca Artificial , Cardiotônicos/farmacologia , Proteínas de Transporte/metabolismo , Contração Miocárdica/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Genótipo , Cinética , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Mutação , Músculos Papilares/metabolismo , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...