Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1302975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726296

RESUMO

Peaches are susceptible to various environmental stresses. Particularly in late spring, freezing temperatures can damage peaches and consequently, affect their productivity. Therefore, flowering delay is a prominent strategy for avoiding spring frost damage. Our previous study confirmed that treatment with 5% sodium alginate and 100 mM CaCl2 (5AG) to avoid frost damage during the blooming stage delays flowering. To reveal the flowering delay mechanism of peaches, this study systematically analyzed the modification of amino acid profiles in control and 5AG-treated peach plants at different day intervals. Our findings indicate that arginine (Arg), glutamate (Glu), and proline (Pro) levels differed between the control and 5AG-treated peach shoots throughout the phenological development of flower buds. Furthermore, two amino acids (Arg and Glu) are involved in the Pro pathway. Thus, using a computational metabolomics method, Pro biosynthesis and its characteristics, gene ontology, gene synteny, cis-regulatory elements, and gene organizations were examined to decipher the involvement of Pro metabolism in peach flowering delay. In addition, qRT-PCR analysis revealed the transcriptional regulation of Pro-related and flowering-responsive genes and their role in flowering delay. Overall, this pilot study provides new insights into the role of Pro in the flowering delay mechanisms in Prunus persica through 5AG treatment.

2.
Plant Cell Rep ; 43(5): 123, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642148

RESUMO

KEY MESSAGE: CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.


Assuntos
Fungos , Micorrizas , Micorrizas/fisiologia , Peróxido de Hidrogênio , Estresse Fisiológico/genética , Clonagem Molecular
3.
Heliyon ; 10(6): e27983, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545203

RESUMO

Global increase in recurrence of bacterial vaginosis (BV) and worrisome rise in antimicrobial resistance pose an urgent call for new/novel antibacterial agents. In light of the circumstance, the present study demonstrates the in vitro and in vivo antibacterial activity of a phytochemical citral, with a particular emphasis to elucidate its mechanistic action against Gardnerella vaginalis -a potential cause of BV. Out of 21 phytochemicals screened initially against G. vaginalis, citral was envisaged to be a phenomenal antibacterial agent showing MIC and MBC at 128 µg/mL. Citral's rapid killing ability was revealed by a time-killing kinetics assay supported by CFU, signifying that it completely killed the given inoculum of planktonic G. vaginalis cells within 60 min. Further, citral was found to exhibit 1 min contact-killing efficacy together with mature-biofilm disintegrating ability at increasing MICs. To further understand the molecular action of citral, in vitro investigations such as ROS estimation, PI staining and intracellular protein release assay were performed, which demonstrated that citral deteriorated the membrane integrity of G. vaginalis. Galleria mellonella, a simple invertebrate model used to evaluate citral's non-toxic and antibacterial activity in vivo, demonstrates that citral completely restored the larvae from G. vaginalis infection. The metabolite level investigation using LC-MS revealed that citral had negative impact on biotin metabolism (via., biotin), spermidine metabolism (via., 5'-methylthioadenosine and spermidine) and nucleotide metabolism (via., guanine, adenine and uridine). Since that biotin is associated with seven different metabolic pathways, it is conceivable that citral could target biotin biosynthesis or its metabolism and as a result, disrupt other metabolic pathways, such as lipid and fatty acid synthesis, which is essential for the creation of cell membranes. Thus, the current study is the first of its kind to delineate the promising in vitro and in vivo antibacterial efficacy of citral and decipher its plausible antibacterial action mechanism through metabolomic approach, which concomitantly emphasizes citral as a viable natural therapeutic alternative to manage and control BV.

4.
Mol Ther Nucleic Acids ; 34: 102053, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37941832

RESUMO

Emerging chemo- and radiotherapy resistance exacerbated the cancer risk and necessitated novel treatment strategies. Although RNA therapeutics against pro-oncogenic genes are highly effective, tumor-specific delivery remains a barrier to the implementation of this valuable tool. In this study, we report a tryptophan-auxotrophic Salmonella typhimurium strain as an onco-therapeutic delivery system with tumor-targeting ability using 4T1 mice breast-cancer model. The receptor-binding cancer antigen expressed on SiSo cell (RCAS1) is a cancer-specific protein that induces the apoptosis of peripheral lymphocytes and confers tumor immune evasion. We designed a long non-coding antisense-RNA against RCAS1 (asRCAS1) and delivered by Salmonella using a non-antibiotic, auxotrophic-selective, eukaryotic expression plasmid, pJHL204. After in vivo tumor-to-tumor passaging, the JOL2888 (ΔtrpA, ΔtrpE, Δasd + asRCAS1) strain exhibited high sustainability in tumors, but did not last in healthy organs, thereby demonstrating tumor specificity and safety. RCAS1 inhibition in the tumor was confirmed by western blotting and qPCR. In mice, JOL2888 treatment reduced tumor-associated macrophages, improved the T cell population, elicited cell-mediated immunity, and suppressed cancer-promoting genes. Consequently, the JOL2888 treatment significantly decreased the tumor volume by 80%, decreased splenomegaly by 30%, and completely arrested lung metastasis. These findings highlight the intrinsic tumor-targeting ability of tryptophan-auxotrophic Salmonella for delivering onco-therapeutic macromolecules.

5.
Plants (Basel) ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653856

RESUMO

Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.

7.
Plant Cell Tissue Organ Cult ; 153(3): 447-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197003

RESUMO

Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceutical purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants by applying elicitation strategies along with advanced biotechnological approaches.

8.
Viruses ; 15(4)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37112836

RESUMO

Genetic variant(s) of concern (VoC) of SARS-CoV-2 have been emerging worldwide due to mutations in the gene encoding spike glycoprotein. We performed comprehensive analyses of spike protein mutations in the significant variant clade of SARS-CoV-2, using the data available on the Nextstrain server. We selected various mutations, namely, A222V, N439K, N501Y, L452R, Y453F, E484K, K417N, T478K, L981F, L212I, N856K, T547K, G496S, and Y369C for this study. These mutations were chosen based on their global entropic score, emergence, spread, transmission, and their location in the spike receptor binding domain (RBD). The relative abundance of these mutations was mapped with global mutation D614G as a reference. Our analyses suggest the rapid emergence of newer global mutations alongside D614G, as reported during the recent waves of COVID-19 in various parts of the world. These mutations could be instrumentally imperative for the transmission, infectivity, virulence, and host immune system's evasion of SARS-CoV-2. The probable impact of these mutations on vaccine effectiveness, antigenic diversity, antibody interactions, protein stability, RBD flexibility, and accessibility to human cell receptor ACE2 was studied in silico. Overall, the present study can help researchers to design the next generation of vaccines and biotherapeutics to combat COVID-19 infection.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética , Mutação , Ligação Proteica
9.
Plants (Basel) ; 12(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36840201

RESUMO

Selenium (Se) is a microelement that plays an important nutrient role by influencing various physiological and biochemical traits in plants. It has been shown to stimulate plant metabolism, enhancing secondary metabolites and lowering abiotic and biotic stress in plants. Globally, the enormous applications of nanotechnology in the food and agricultural sectors have vastly expanded. Nanoselenium is more active than bulk materials, and various routes of synthesis of Se nanoparticles (Se-NPs) have been reported in which green synthesis using plants is more attractive due to a reduction in ecological issues and an increase in biological activities. The Se-NP-based biofortification is more significant because it increases plant stress tolerance and positively impacts their metabolism. Se-NPs can enhance plant resistance to various oxidative stresses, promote growth, enhance soil nutrient status, enhance plant antioxidant levels, and participate in the transpiration process. Additionally, they use a readily available, biodegradable reducing agent and are ecologically friendly. This review concentrates on notable information on the different modes of Se-NPs' synthesis and characterization, their applications in plant growth, yield, and stress tolerance, and their influence on the metabolic process.

10.
Eur J Pharmacol ; 940: 175479, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566006

RESUMO

Non-small cell lung cancer (NSCLC) is the frequent subtype of lung cancer and the currently used treatment methods, diagnosis, and chemoresistance are relatively ineffective. Determining the pharmacological targets from active biomolecules of medicinal plants has become a frontiers era for biomedical research to develop novel therapies. In view of these scenarios, this pilot study, network pharmacology, cheminformatics, integrative omics, molecular docking and in vitro anti-cancer analysis were performed to unveil the multi-targeted treatment mechanisms of novel plant bioactives to treat lung cancer. Bioactive molecules from medicinal plants were compiled from PubChem. Network pharmacology approach revealed that 29 compounds efficiently target the 390 human and lung cancer associated genes. In addition, comparative analysis was performed and identified the 7 bioactive molecules significantly targeting 8 lung cancer genes. The integrative omics analysis discovered unique genes between the lung cancer and normal lung tissues. These genes were further validated through protein-protein interaction, gene ontology, gene functional and pathway enrichment, boxplot and overall survival analyses to understand the function of unique genes and their involvement in cancer signaling pathways. Survival heatmap analyses identified the significant prognostic genes. Docking results revealed that, lupeol and p-coumaric acid displayed high binding affinities with MIF, CCNB1, FABP4. Hence, we selected these two bioactives for in vitro analysis. Furthermore, these selected bioactives were showed concentration dependent cytotoxicity against the lung adenocarcinoma cells (A549). This holistic study has opened up novel avenues and unravels the cancer prognostic genes which could serve as druggable target and bioactives with anti-cancerous efficacy. Further functional validations are prerequisites to deciphering these bioactives as commercial drug candidates.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Projetos Piloto
11.
Plants (Basel) ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202421

RESUMO

Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.

12.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203330

RESUMO

Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Prognóstico , Caquexia/etiologia , Caquexia/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Perfilação da Expressão Gênica , Extratos Vegetais , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
J Fungi (Basel) ; 8(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547638

RESUMO

Environmentally friendly arbuscular mycorrhizal fungi (AMF) in the soil can alleviate host damage from abiotic stresses, but the underlying mechanisms are unclear. The objective of this study was to analyze the effects of an arbuscular mycorrhizal fungus, Paraglomus occultum, on plant growth, nitrogen balance index, and expressions of salt overly sensitive genes (SOSs), plasma membrane intrinsic protein genes (PIPs), and tonoplast intrinsic protein genes (TIPs) in leaves of tomato (Solanum lycopersicum L. var. Huapiqiu) seedlings grown in 0 and 150 mM NaCl stress. NaCl stress severely inhibited plant growth, but P. occultum inoculation significantly improved plant growth. NaCl stress also suppressed the chlorophyll index, accompanied by an increase in the flavonoid index, whereas inoculation with AMF significantly promoted the chlorophyll index as well as reduced the flavonoid index under NaCl conditions, thus leading to an increase in the nitrogen balance index in inoculated plants. NaCl stress regulated the expression of SlPIP1 and SlPIP2 genes in leaves, and five SlPIPs genes were up-regulated after P. occultum colonization under NaCl stress, along with the down-regulation of only SlPIP1;2. Both NaCl stress and P. occultum inoculation induced diverse expression patterns in SlTIPs, coupled with a greater number of up-regulated TIPs in inoculated versus uninoculated plants under NaCl stress. NaCl stress up-regulated SlSOS2 expressions of mycorrhizal and non-mycorrhizal plants, while P. occultum significantly up-regulated SlSOS1 expressions by 1.13- and 0.45-fold under non-NaCl and NaCl conditions, respectively. It was concluded that P. occultum inoculation enhanced the salt tolerance of the tomato, associated with the nutrient status and stress-responsive gene (aquaporins and SOS1) expressions.

14.
Metabolites ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422285

RESUMO

Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.

15.
ACS Omega ; 7(44): 40344-40354, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385888

RESUMO

Bacopa monnieri is reported as a potent Indian medicinal plant that possesses numerous pharmacological activities due to the presence of various bioactive compounds. These pharmacological activities were used in the ancient medicine system to cure inflammatory conditions. Bacopa has the ability to reduce acute pain and inflammation by inhibiting the enzyme cyclo-oxygenase-2 (COX-2) and reducing COX-2-arbitrated prostanoid mediators. Moreover, the anti-inflammatory property may also be associated with the neuroprotective activity of Bacopa. Considering this importance, the current pilot study focused on the anti-inflammatory potential of various phytocompounds of bacopa and their interaction with inflammation responsible genes such as COX2, iNOS, LOX, STAT3, CCR1, and MMP9 through pharmacology analysis of its systems. Docking results revealed that, quercetin (QR) showed significant binding energies with inflammatory genes. Hence, we selected QR as a potential phytocompound for further in vitro experiments. This existing study aimed to evaluate the efficacy of QR as a potent anti-inflammatory compound against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The in vitro analysis concludes that QR effectively reduces the production of nitric oxide (NO) in LPS-induced RAW264.7 cells and downregulates the expression of COX-2 and iNOS genes due to the inhibitory potential of QR on LPS-stimulated NO production.

16.
Biology (Basel) ; 11(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36101403

RESUMO

Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.

17.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144690

RESUMO

Coronavirus disease (COVID-19) is a viral disease caused by the SARS-CoV-2 virus and is becoming a global threat again because of the higher transmission rate and lack of proper therapeutics as well as the rapid mutations in the genetic pattern of SARS-CoV-2. Despite vaccinations, the prevalence and recurrence of this infection are still on the rise, which urges the identification of potential global therapeutics for a complete cure. Plant-based alternative medicine is becoming popular worldwide because of its higher efficiency and minimal side effects. Yet, identifying the potential medicinal plants and formulating a plant-based medicine is still a bottleneck. Hence, in this study, the systems pharmacology, transcriptomics, and cheminformatics approaches were employed to uncover the multi-targeted mechanisms and to screen the potential phytocompounds from significant medicinal plants to treat COVID-19. These approaches have identified 30 unique COVID-19 human immune genes targeted by the 25 phytocompounds present in four selected ethnobotanical plants. Differential and co-expression profiling and pathway enrichment analyses delineate the molecular signaling and immune functional regulations of the COVID-19 unique genes. In addition, the credibility of these compounds was analyzed by the pharmacological features. The current holistic finding is the first to explore whether the identified potential bioactives could reform into a drug candidate to treat COVID-19. Furthermore, the molecular docking analysis was employed to identify the important bioactive compounds; thus, an ultimately significant medicinal plant was also determined. However, further laboratory evaluation and clinical validation are required to determine the efficiency of a therapeutic formulation against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Quimioinformática , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Transcriptoma
18.
Sci Rep ; 12(1): 14245, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989375

RESUMO

Molecular level understanding on the role of viral infections causing cervical cancer is highly essential for therapeutic development. In these instances, systems pharmacology along with multi omics approach helps in unraveling the multi-targeted mechanisms of novel biologically active compounds to combat cervical cancer. The immuno-transcriptomic dataset of healthy and infected cervical cancer patients was retrieved from the array express. Further, the phytocompounds from medicinal plants were collected from the literature. Network Analyst 3.0 has been used to identify the immune genes around 384 which are differentially expressed and responsible for cervical cancer. Among the 87 compounds reported in plants for treating cervical cancer, only 79 compounds were targeting the identified immune genes of cervical cancer. The significant genes responsible for the domination in cervical cancer are identified in this study. The virogenomic signatures observed from cervical cancer caused by E7 oncoproteins serve as the potential therapeutic targets whereas, the identified compounds can act as anti-HPV drug deliveries. In future, the exploratory rationale of the acquired results will be useful in optimizing small molecules which can be a viable drug candidate.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Farmacologia em Rede , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Transcriptoma , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
19.
Front Genet ; 13: 946834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873492

RESUMO

Plant transcription factors (TFs) are significant players in transcriptional regulations, signal transduction, and constitute an integral part of signaling networks. MYB TFs are major TF superfamilies that play pivotal roles in regulation of transcriptional reprogramming, physiological processes, and abiotic stress (AbS) responses. To explore the understanding of MYB TFs, genome and transcriptome-wide identification was performed in the C3 model plant, Oryza sativa (OsMYB). This study retrieved 114 OsMYB TFs that were computationally analyzed for their expression profiling, gene organization, cis-acting elements, and physicochemical properties. Based on the microarray datasets, six OsMYB genes which were sorted out and identified by a differential expression pattern were noted in various tissues. Systematic expression profiling of OsMYB TFs showed their meta-differential expression of different AbS treatments, spatio-temporal gene expression of various tissues and their growth in the field, and gene expression profiling in responses to phytohormones. In addition, the circular ideogram of OsMYB genes in related C4 grass plants conferred the gene synteny. Protein-protein interactions of these genes revealed the molecular crosstalk of OsMYB TFs. Transcriptional analysis (qPCR) of six OsMYB players in response to drought and salinity stress suggested the involvement in individual and combined AbS responses. To decipher how these OsMYB play functional roles in AbS dynamics, further research is a prerequisite.

20.
Plants (Basel) ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336695

RESUMO

In nature or field conditions, plants are frequently exposed to diverse environmental stressors. Among abiotic stresses, the low temperature of freezing conditions is a critical factor that influences plants, including horticultural crops, decreasing their growth, development, and eventually quality and productivity. Fortunately, plants have developed a mechanism to improve the tolerance to freezing during exposure to a range of low temperatures. In this present review, current findings on freezing stress physiology and genetics in peach (Prunus persica) were refined with an emphasis on adaptive mechanisms for cold acclimation, deacclimation, and reacclimation. In addition, advancements using multi-omics and genetic engineering approaches unravel the molecular physiological mechanisms, including hormonal regulations and their general perceptions of freezing tolerance in peach were comprehensively described. This review might pave the way for future research to the horticulturalists and research scientists to overcome the challenges of freezing temperature and improvement of crop management in these conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...