Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Neuroimage ; 298: 120774, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103065

RESUMO

How cortical oscillations are involved in the coordination of functionally coupled muscles and how this is modulated by different movement contexts (static vs dynamic) remains unclear. Here, this is investigated by recording high-density electroencephalography (EEG) and electromyography (EMG) from different forearm muscles while healthy participants (n = 20) performed movement tasks (static and dynamic posture holding, and reaching) with their dominant hand. When dynamic perturbation was applied, beta band (15-35 Hz) activities in the motor cortex contralateral to the performing hand reduced during the holding phase, comparative to when there was no perturbation. During static posture holding, transient periods of increased cortical beta oscillations (beta bursts) were associated with greater corticomuscular coherence and increased phase synchrony between muscles (intermuscular coherence) in the beta frequency band compared to the no-burst period. This effect was not present when resisting dynamic perturbation. The results suggest that cortical beta bursts assist synchronisation of different muscles during static posture holding in healthy motor control, contributing to the maintenance and stabilisation of functional muscle groups. Theoretically, increased cortical beta oscillations could lead to exaggerated synchronisation in different muscles making the initialisation of movements more difficult, as observed in Parkinson's disease.

2.
Brain Commun ; 6(3): fcae175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846536

RESUMO

Over the first years of life, the brain undergoes substantial organization in response to environmental stimulation. In a silent world, it may promote vision by (i) recruiting resources from the auditory cortex and (ii) making the visual cortex more efficient. It is unclear when such changes occur and how adaptive they are, questions that children with cochlear implants can help address. Here, we examined 7-18 years old children: 50 had cochlear implants, with delayed or age-appropriate language abilities, and 25 had typical hearing and language. High-density electroencephalography and functional near-infrared spectroscopy were used to evaluate cortical responses to a low-level visual task. Evidence for a 'weaker visual cortex response' and 'less synchronized or less inhibitory activity of auditory association areas' in the implanted children with language delays suggests that cross-modal reorganization can be maladaptive and does not necessarily strengthen the dominant visual sense.

3.
NPJ Digit Med ; 7(1): 160, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890413

RESUMO

Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.

4.
NPJ Digit Med ; 7(1): 165, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906946

RESUMO

Tremor is one of the most common neurological symptoms. Its clinical and neurobiological complexity necessitates novel approaches for granular phenotyping. Instrumented neurophysiological analyses have proven useful, but are highly resource-intensive and lack broad accessibility. In contrast, bedside scores are simple to administer, but lack the granularity to capture subtle but relevant tremor features. We utilise the open-source computer vision pose tracking algorithm Mediapipe to track hands in clinical video recordings and use the resulting time series to compute canonical tremor features. This approach is compared to marker-based 3D motion capture, wrist-worn accelerometry, clinical scoring and a second, specifically trained tremor-specific algorithm in two independent clinical cohorts. These cohorts consisted of 66 patients diagnosed with essential tremor, assessed in different task conditions and states of deep brain stimulation therapy. We find that Mediapipe-derived tremor metrics exhibit high convergent clinical validity to scores (Spearman's ρ = 0.55-0.86, p≤ .01) as well as an accuracy of up to 2.60 mm (95% CI [-3.13, 8.23]) and ≤0.21 Hz (95% CI [-0.05, 0.46]) for tremor amplitude and frequency measurements, matching gold-standard equipment. Mediapipe, but not the disease-specific algorithm, was capable of analysing videos involving complex configurational changes of the hands. Moreover, it enabled the extraction of tremor features with diagnostic and prognostic relevance, a dimension which conventional tremor scores were unable to provide. Collectively, this demonstrates that current computer vision algorithms can be transformed into an accurate and highly accessible tool for video-based tremor analysis, yielding comparable results to gold standard tremor recordings.

5.
Exp Brain Res ; 242(8): 1851-1859, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38842754

RESUMO

OBJECTIVE: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.


Assuntos
Potencial Evocado Motor , Lateralidade Funcional , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Potencial Evocado Motor/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Motor/fisiologia , Lateralidade Funcional/fisiologia , Eletromiografia , Mapeamento Encefálico
6.
Rheumatol Ther ; 11(4): 897-911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819779

RESUMO

INTRODUCTION: Psoriatic arthritis (PsA) is associated with increased cardiovascular (CV) risk and mortality. Aortic stiffness measured by carotid-femoral pulse wave velocity (cfPWV) has been shown to predict CV risk in the general population. The present study aimed to examine cfPWV values of patients with PsA compared to healthy controls and to evaluate associations of cfPWV with patient- and disease-associated characteristics, as well as with an established traditional CV prediction score of the European Society of Cardiology (Systemic Coronary Risk Evaluation; SCORE), for the first time. METHODS: cfPWV and SCORE were evaluated in patients with PsA and healthy controls, along with clinical and laboratory disease parameters. Differences in cfPWV measurements between the two groups and associations of cfPWV with patient- and disease-associated characteristics were statistically evaluated. RESULTS: A total of 150 patients with PsA (PSOCARD cohort) and 88 control subjects were recruited. cfPWV was significantly higher in the PsA group compared to controls, even after adjustment for confounders (padj = 0.034). Moreover, cfPWV was independently associated with disease duration (r = 0.304, p = 0.001), age (rho = 0.688, p < 0.001), systolic arterial pressure (rho = 0.351, p < 0.001), glomerular filtration rate (inverse: rho = - 0.264, p = 0.001), and red cell distribution width, a marker of major adverse CV events (MACE) (rho = 0.190, p = 0.02). SCORE revealed an elevated CV risk in 8.73% of the patients, whereas cfPWV showed increased aortic stiffness and end-organ disease in 16.00% of the same cohort. CONCLUSIONS: In the largest cfPWV/PsA cohort examined to date, patients with PsA exhibited increased aortic stiffness compared to healthy controls. PsA duration was the most important independent disease-associated predictor of increased aortic stiffness, next to traditional CV risk factors. cfPWV measurements may help identify subclinical end-organ disease and abnormal aortic stiffness and thus assist CV risk classification in PsA.

7.
Mol Psychiatry ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806692

RESUMO

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

8.
Mov Disord ; 39(5): 778-787, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532269

RESUMO

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Eletromiografia , Levodopa , Doença de Parkinson , Tremor , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Masculino , Feminino , Tremor/fisiopatologia , Tremor/etiologia , Pessoa de Meia-Idade , Idoso , Levodopa/uso terapêutico , Levodopa/farmacologia , Ritmo Gama/fisiologia , Ritmo Gama/efeitos dos fármacos , Ritmo beta/fisiologia , Ritmo beta/efeitos dos fármacos , Eletroencefalografia/métodos , Antiparkinsonianos/uso terapêutico
9.
Neurobiol Dis ; 194: 106462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442845

RESUMO

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Fenofibrato , Ratos , Animais , Distonia/genética , Distonia/metabolismo , Roedores/metabolismo , Fluordesoxiglucose F18 , PPAR alfa/metabolismo , Distúrbios Distônicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucose
10.
Diagnostics (Basel) ; 14(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396447

RESUMO

OBJECTIVE: Biological motion perception (BMP) correlating with a mirror neuron system (MNS) is attenuated in underage individuals with autism spectrum disorder (ASD). While BMP in typically-developing controls (TDCs) encompasses interconnected MNS structures, ASD data hint at segregated form and motion processing. This coincides with less fewer long-range connections in ASD than TDC. Using BMP and electroencephalography (EEG) in ASD, we characterized directionality and coherence (mu and beta frequencies). Deficient BMP may stem from desynchronization thereof in MNS and may predict social-communicative deficits in ASD. Clinical considerations thus profit from brain-behavior associations. METHODS: Point-like walkers elicited BMP using 15 white dots (walker vs. scramble in 21 ASD (mean: 11.3 ± 2.3 years) vs. 23 TDC (mean: 11.9 ± 2.5 years). Dynamic Imaging of Coherent Sources (DICS) characterized the underlying EEG time-frequency causality through time-resolved Partial Directed Coherence (tPDC). Support Vector Machine (SVM) classification validated the group effects (ASD vs. TDC). RESULTS: TDC showed MNS sources and long-distance paths (both feedback and bidirectional); ASD demonstrated distinct from and motion sources, predominantly local feedforward connectivity, and weaker coherence. Brain-behavior correlations point towards dysfunctional networks. SVM successfully classified ASD regarding EEG and performance. CONCLUSION: ASD participants showed segregated local networks for BMP potentially underlying thwarted complex social interactions. Alternative explanations include selective attention and global-local processing deficits. SIGNIFICANCE: This is the first study applying source-based connectivity to reveal segregated BMP networks in ASD regarding structure, cognition, frequencies, and temporal dynamics that may explain socio-communicative aberrancies.

11.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402912

RESUMO

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Assuntos
Distonia , Distúrbios Distônicos , Camundongos , Animais , Distonia/genética , Interação Gene-Ambiente , Distúrbios Distônicos/genética , Corpo Estriado/metabolismo , Predisposição Genética para Doença
12.
Eur J Neurol ; 31(4): e16201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235854

RESUMO

BACKGROUND AND PURPOSE: Resting-state electroencephalography (EEG) holds promise for assessing brain networks in amyotrophic lateral sclerosis (ALS). We investigated whether neural ß-band oscillations in the sensorimotor network could serve as an objective quantitative measure of progressive motor impairment and functional disability in ALS patients. METHODS: Resting-state EEG was recorded in 18 people with ALS and 38 age- and gender-matched healthy controls. We estimated source-localized ß-band spectral power in the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper motor neuron scores, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score, fine motor function (FMF) subscore, and progression rate. Correlations between clinical scores and ß-band power were analysed and corrected using a false discovery rate of q = 0.05. RESULTS: ß-Band power was significantly lower in people with ALS than controls (p = 0.004), and correlated with LMN score (R = -0.65, p = 0.013), FMF subscore (R = -0.53, p = 0.036), and FMF progression rate (R = 0.52, p = 0.036). CONCLUSIONS: ß-Band spectral power in the sensorimotor cortex reflects clinically evaluated motor impairment in ALS. This technology merits further investigation as a biomarker of progressive functional disability.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Eletroencefalografia , Neurônios Motores , Encéfalo , Mapeamento Encefálico
14.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38086346

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Assuntos
Estimulação Encefálica Profunda , Transtornos Mentais , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Encéfalo , Transtornos Mentais/terapia , Doença de Parkinson/terapia
15.
Hum Brain Mapp ; 45(1): e26536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087950

RESUMO

Recent electroencephalography (EEG) studies have shown that patterns of brain activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control groups. These differences can be interrogated by examining EEG microstates, which are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying the temporal properties of the four canonical microstates can elucidate how the dynamics of functional brain networks are altered in neurological conditions. Here we have analysed the properties of microstates to detect and quantify signal-based abnormality in ALS. High-density resting-state EEG data from 129 people with ALS and 78 HC were recorded longitudinally over a 24-month period. EEG topographies were extracted at instances of peak global field power to identify four microstate classes (labelled A-D) using K-means clustering. Each EEG topography was retrospectively associated with a microstate class based on global map dissimilarity. Changes in microstate properties over the course of the disease were assessed in people with ALS and compared with changes in clinical scores. The topographies of microstate classes remained consistent across participants and conditions. Differences were observed in coverage, occurrence, duration, and transition probabilities between ALS and control groups. The duration of microstate class B and coverage of microstate class C correlated with lower limb functional decline. The transition probabilities A to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those with cognitive and behavioural impairments. Microstate characteristics also significantly changed over the course of the disease. Examining the temporal dependencies in the sequences of microstates revealed that the symmetry and stationarity of transition matrices were increased in people with late-stage ALS. These alterations in the properties of EEG microstates in ALS may reflect abnormalities within the sensory network and higher-order networks. Microstate properties could also prospectively predict symptom progression in those with cognitive impairments.


Assuntos
Esclerose Lateral Amiotrófica , Disfunção Cognitiva , Humanos , Eletroencefalografia , Estudos Retrospectivos , Encéfalo , Mapeamento Encefálico , Disfunção Cognitiva/etiologia
16.
Neuroimage Clin ; 41: 103558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142520

RESUMO

Acute strokes can affect heart rate variability (HRV), the mechanisms how are not well understood. We included 42 acute stroke patients (2-7 days after ischemic stroke, mean age 66 years, 16 women). For analysis of HRV, 20 matched controls (mean age 60.7, 10 women) were recruited. HRV was assessed at rest, in a supine position and individual breathing rhythmus for 5 min. The coefficient of variation (VC), the root mean square of successive differences (RMSSD), the powers of low (LF, 0.04-0.14 Hz) and high (HF, 0.15-0.50 Hz) frequency bands were extracted. HRV parameters were z-transformed related to age- and sex-matched normal subjects. Z-values < -1 indicate reduced HRV. Acute stroke lesions were marked on diffusion-weighted images employing MRIcroN and co-registered to a T1-weighted structural volume-dataset. Using independent component analysis (ICA), stroke lesions were related to HRV. Subsequently, we used the ICA-derived lesion pattern as a seed and estimated the connectivity between these brain regions and seven common functional networks, which were obtained from 50 age-matched healthy subjects (mean age 68.9, 27 women). Especially, LF and VC were frequently reduced in patients. ICA revealed one covarying lesion pattern for LF and one similar for VC, predominantly affecting the right hemisphere. Activity in brain areas corresponding to these lesions mainly impact on limbic (r = 0.55 ± 0.08) and salience ventral attention networks (0.61 ± 0.10) in the group with reduced LF power (z-score < -1), but on control and default mode networks in the group with physiological LF power (z-score > -1). No different connectivity could be found for the respective VC groups. Our results suggest that HRV alteration after acute stroke might be due to affecting resting-state brain networks.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Frequência Cardíaca/fisiologia , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem
18.
Neurotherapeutics ; 20(6): 1767-1778, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37819489

RESUMO

Studies have shown that beta band activity is not tonically elevated but comprises exaggerated phasic bursts of varying durations and magnitudes, for Parkinson's disease (PD) patients. Current methods for detecting beta bursts target a single frequency peak in beta band, potentially ignoring bursts in the wider beta band. In this study, we propose a new robust framework for beta burst identification across wide frequency ranges. Chronic local field potential at-rest recordings were obtained from seven PD patients implanted with Medtronic SenSight™ deep brain stimulation (DBS) electrodes. The proposed method uses wavelet decomposition to compute the time-frequency spectrum and identifies bursts spanning multiple frequency bins by thresholding, offering an additional burst measure, ∆f, that captures the width of a burst in the frequency domain. Analysis included calculating burst duration, magnitude, and ∆f and evaluating the distribution and likelihood of bursts between the low beta (13-20 Hz) and high beta (21-35 Hz). Finally, the results of the analysis were correlated to motor impairment (MDS-UPDRS III) med off scores. We found that low beta bursts with longer durations and larger width in the frequency domain (∆f) were positively correlated, while high beta bursts with longer durations and larger ∆f were negatively correlated with motor impairment. The proposed method, finding clear differences between bursting behavior in high and low beta bands, has clearly demonstrated the importance of considering wide frequency bands for beta burst behavior with implications for closed-loop DBS paradigms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia , Descanso
19.
Diagnostics (Basel) ; 13(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37685374

RESUMO

BACKGROUND AND OBJECTIVES: Obstructive sleep apnea (OSA) is a known risk factor for chronic coronary syndrome (CCS). CCS and OSA are separately associated with significant changes in heart rate variability (HRV). In this proof-of-concept study, we tested whether HRV values are significantly different between OSA patients with concomitant severe CCS, and OSA patients without known CCS. MATERIAL AND METHODS: The study comprised a retrospective assessment of the historical and raw polysomnography (PSG) data of 32 patients who presented to a tertiary university hospital with clinical complaints of OSA. A total of 16 patients (four females, mean age 62.94 ± 2.74 years, mean body mass index (BMI) 31.93 ± 1.65 kg/m2) with OSA (median apnea-hypopnea index (AHI) 39.1 (30.5-70.6)/h) and severe CCS were compared to 16 patients (four females, mean age 62.35 ± 2.06 years, mean BMI 32.19 ± 1.07 kg/m2) with OSA (median AHI 40 (30.6-44.5)/h) but without severe CCS. The short-long-term HRV (in msec) was calculated based on the data of a single-lead electrocardiogram (ECG) provided by one full-night PSG, using the standard deviation of the NN, normal-to-normal intervals (SDNN) and the heart rate variability triangular index (HRVI) methods, and compared between the two groups. RESULTS: A significant reduction (p < 0.05) in both SDNN and HRVI was found in the OSA group with CCS compared to the OSA group without CCS. CONCLUSIONS: Severe CCS has a significant impact on short-long-term HRV in OSA patients. Further studies in OSA patients with less-severe CCS may shed more light onto the involved mechanistic processes. If confirmed in future larger studies, this physiologic metric has the potential to provide a robust surrogate marker of severe CCS in OSA patients.

20.
Front Physiol ; 14: 1199338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465697

RESUMO

The execution of voluntary movements is primarily governed by the cerebral hemisphere contralateral to the moving limb. Previous research indicates that the ipsilateral motor network, comprising the primary motor cortex (M1), supplementary motor area (SMA), and premotor cortex (PM), plays a crucial role in the planning and execution of limb movements. However, the precise functions of this network and its interplay in different task contexts have yet to be fully understood. Twenty healthy right-handed participants (10 females, mean age 26.1 ± 4.6 years) underwent functional MRI scans while performing biceps brachii representations such as bilateral, unilateral flexion, and bilateral flexion-extension. Ipsilateral motor evoked potentials (iMEPs) were obtained from the identical set of participants in a prior study using transcranial magnetic stimulation (TMS) targeting M1 while employing the same motor tasks. The voxel time series was extracted based on the region of interest (M1, SMA, ventral PM and dorsal PM). Directed functinal connectivity was derived from the extracted time series using time-resolved partial directed coherence. We found increased connectivity from left-PMv to both sides M1, as well as right-PMv to both sides SMA, in unilateral flexion compared to bilateral flexion. Connectivity from left M1 to left-PMv, and left-SMA to right-PMd, also increased in both unilateral flexion and bilateral flexion-extension compared to bilateral flexion. However, connectivity between PMv and right-M1 to left-PMd decreased during bilateral flexion-extension compared to unilateral flexion. Additionally, during bilateral flexion-extension, the connectivity from right-M1 to right-SMA had a negative relationship with the area ratio of iMEP in the dominant side. Our results provide corroborating evidence for prior research suggesting that the ipsilateral motor network is implicated in the voluntary movements and underscores its involvement in cognitive processes such as movement planning and coordination. Moreover, ipsilateral connectivity from M1 to SMA on the dominant side can modulate the degree of ipsilateral M1 activation during bilateral antagonistic contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA