Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
2.
FASEB J ; 38(1): e23379, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133921

RESUMO

Dynamin-related protein 1 (Drp1) is a cytosolic GTPase protein that when activated translocates to the mitochondria, meditating mitochondrial fission and increasing reactive oxygen species (ROS) in cardiomyocytes. Drp1 has shown promise as a therapeutic target for reducing cardiac ischemia/reperfusion (IR) injury; however, the lack of specificity of some small molecule Drp1 inhibitors and the reliance on the use of Drp1 haploinsufficient hearts from older mice have left the role of Drp1 in IR in question. Here, we address these concerns using two approaches, using: (a) short-term (3 weeks), conditional, cardiomyocyte-specific, Drp1 knockout (KO) and (b) a novel, highly specific Drp1 GTPase inhibitor, Drpitor1a. Short-term Drp1 KO mice exhibited preserved exercise capacity and cardiac contractility, and their isolated cardiac mitochondria demonstrated increased mitochondrial complex 1 activity, respiratory coupling, and calcium retention capacity compared to controls. When exposed to IR injury in a Langendorff perfusion system, Drp1 KO hearts had preserved contractility, decreased reactive oxygen species (ROS), enhanced mitochondrial calcium capacity, and increased resistance to mitochondrial permeability transition pore (MPTP) opening. Pharmacological inhibition of Drp1 with Drpitor1a following ischemia, but before reperfusion, was as protective as Drp1 KO for cardiac function and mitochondrial calcium homeostasis. In contrast to the benefits of short-term Drp1 inhibition, prolonged Drp1 ablation (6 weeks) resulted in cardiomyopathy. Drp1 KO hearts were also associated with decreased ryanodine receptor 2 (RyR2) protein expression and pharmacological inhibition of the RyR2 receptor decreased ROS in post-IR hearts suggesting that changes in RyR2 may have a role in Drp1 KO mediated cardioprotection. We conclude that Drp1-mediated increases in myocardial ROS production and impairment of mitochondrial calcium handling are key mechanisms of IR injury. Short-term inhibition of Drp1 is a promising strategy to limit early myocardial IR injury which is relevant for the therapy of acute myocardial infarction, cardiac arrest, and heart transplantation.


Assuntos
Dinaminas , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Cálcio/metabolismo , Dinaminas/metabolismo , Homeostase , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986788

RESUMO

A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-ß induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-ß-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-ß; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.

4.
PLoS One ; 18(10): e0292990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37844118

RESUMO

Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.


Assuntos
Cardiomiopatias , Doenças Cardiovasculares , Apneia Obstrutiva do Sono , Adulto , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Heme Oxigenase (Desciclizante)/genética , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Desenvolvimento Muscular
5.
Sci Transl Med ; 15(709): eabm5755, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585502

RESUMO

Aging is a major risk factor of high incidence and increased mortality of acute respiratory distress syndrome (ARDS). Here, we demonstrated that persistent lung injury and high mortality in aged mice after sepsis challenge were attributable to impaired endothelial regeneration and vascular repair. Genetic lineage tracing study showed that endothelial regeneration after sepsis-induced vascular injury was mediated by lung resident endothelial proliferation in young adult mice, whereas this intrinsic regenerative program was impaired in aged mice. Expression of forkhead box M1 (FoxM1), an important mediator of endothelial regeneration in young mice, was not induced in lungs of aged mice. Transgenic FOXM1 expression or in vivo endothelium-targeted nanoparticle delivery of the FOXM1 gene driven by an endothelial cell (EC)-specific promoter reactivated endothelial regeneration, normalized vascular repair and resolution of inflammation, and promoted survival in aged mice after sepsis challenge. In addition, treatment with the FDA-approved DNA demethylating agent decitabine was sufficient to reactivate FoxM1-dependent endothelial regeneration in aged mice, reverse aging-impaired resolution of inflammatory injury, and promote survival. Mechanistically, aging-induced Foxm1 promoter hypermethylation in mice, which could be inhibited by decitabine treatment, inhibited Foxm1 induction after sepsis challenge. In COVID-19 lung autopsy samples, FOXM1 was not induced in vascular ECs of elderly patients in their 80s, in contrast with middle-aged patients (aged 50 to 60 years). Thus, reactivation of FoxM1-mediated endothelial regeneration and vascular repair may represent a potential therapy for elderly patients with ARDS.


Assuntos
COVID-19 , Proteína Forkhead Box M1 , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Sepse , Animais , Camundongos , Decitabina/farmacologia , Endotélio Vascular/fisiologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/genética , Camundongos Transgênicos , Regeneração/fisiologia , Sepse/metabolismo
6.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333255

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and (ii) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.

7.
Sci Rep ; 12(1): 17167, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229484

RESUMO

Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular disease. While intermittent hypoxia (IH) and catecholamine release play an important role in this increased risk, the mechanisms are incompletely understood. We have recently reported that IH causes endothelial cell (EC) activation, an early phenomenon in the development of cardiovascular disease, via IH-induced catecholamine release. Here, we investigated the effects of IH and epinephrine on gene expression in human aortic ECs using RNA-sequencing. We found a significant overlap between IH and epinephrine-induced differentially expressed genes (DEGs) including enrichment in leukocyte migration, cytokine-cytokine receptor interaction, cell adhesion and angiogenesis. Epinephrine caused higher number of DEGs compared to IH. Interestingly, IH when combined with epinephrine had an inhibitory effect on epinephrine-induced gene expression. Combination of IH and epinephrine induced MT1G (Metallothionein 1G), which has been shown to be highly expressed in ECs from parts of aorta (i.e., aortic arch) where atherosclerosis is more likely to occur. In conclusion, epinephrine has a greater effect than IH on EC gene expression in terms of number of genes and their expression level. IH inhibited the epinephrine-induced transcriptional response. Further investigation of the interaction between IH and epinephrine is needed to better understand how OSA causes cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Apneia Obstrutiva do Sono , Aorta/metabolismo , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacologia , Humanos , Hipóxia/metabolismo , Metalotioneína/metabolismo , RNA/metabolismo , Receptores de Citocinas/metabolismo
9.
Elife ; 112022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35822617

RESUMO

Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Sobrevivência Celular , Glicólise , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Oxigênio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35446238

RESUMO

Ahead of Print article withdrawn by publisher.

11.
Front Physiol ; 12: 701995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322038

RESUMO

Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.

13.
Front Physiol ; 12: 669152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025456

RESUMO

Chronic obstructive pulmonary disease (COPD) is a severe respiratory disease with high morbidity and mortality, representing the third leading cause of death worldwide. Traditional risk factors for COPD include aging, genetic predisposition, cigarette smoking, exposure to environmental pollutes, occupational exposure, and individual or parental respiratory disease history. In addition, latest studies have revealed novel and emerging risk factors. In this review, differential gender difference as a factor for COPD development at different territories is discussed for the first time. First, women seem to have more COPD, while more women die of COPD or have more severe COPD, in Western societies. This seems different from the impression that COPD dominants in men, which is true in Eastern societies. It might be related to higher rate of cigarette smoking in women in developed countries (i.e., 12.0% of women in United States smoke vs. 2.2% in China). Nonetheless, women in Eastern societies are exposed to more biomass usage. Second, modest elevation in PM2.5 levels at >∼21.4-32.7 µg/m3, previously considered "cleaner air," is associated with incidence of COPD, indicating that more stringent goals should be set for the reduction of PM2.5 levels to prevent COPD development. Last but not least, e-cigarette use, which has become an epidemic especially among adolescents as officially declared by the United States government, has severe adverse effects that may cause development of COPD early in life. Built upon an overview of the established risk factors for COPD primarily focusing on cigarette smoking and environmental pollutions, the present review further discusses novel concepts, mechanisms, and solutions evolved around the emerging risk factors for COPD discussed above, understanding of which would likely enable better intervention of this devastating disease.

14.
Amino Acids ; 53(12): 1851-1862, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33963932

RESUMO

Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-ß-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.


Assuntos
Aminoácidos/metabolismo , Colágeno/metabolismo , Fibrose/metabolismo , Miofibroblastos/metabolismo , Neoplasias/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos
15.
Nat Metab ; 3(5): 714-727, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031595

RESUMO

Single-cell motility is spatially heterogeneous and driven by metabolic energy. Directly linking cell motility to cell metabolism is technically challenging but biologically important. Here, we use single-cell metabolic imaging to measure glycolysis in individual endothelial cells with genetically encoded biosensors capable of deciphering metabolic heterogeneity at subcellular resolution. We show that cellular glycolysis fuels endothelial activation, migration and contraction and that sites of high lactate production colocalize with active cytoskeletal remodelling within an endothelial cell. Mechanistically, RhoA induces endothelial glycolysis for the phosphorylation of cofilin and myosin light chain in order to reorganize the cytoskeleton and thus control cell motility; RhoA activation triggers a glycolytic burst through the translocation of the glucose transporter SLC2A3/GLUT3 to fuel the cellular contractile machinery, as demonstrated across multiple endothelial cell types. Our data indicate that Rho-GTPase signalling coordinates energy metabolism with cytoskeleton remodelling to regulate endothelial cell motility.


Assuntos
Células Endoteliais/metabolismo , Metabolismo Energético , Transportador de Glucose Tipo 3/genética , Glucose/metabolismo , Imagem Molecular , Análise de Célula Única/métodos , Biomarcadores , Movimento Celular , Células Cultivadas , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Endotélio Vascular , Transportador de Glucose Tipo 3/metabolismo , Glicólise , Humanos , Fenômenos Mecânicos , Modelos Biológicos , Imagem Molecular/métodos , Proteína rhoA de Ligação ao GTP/metabolismo
17.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586677

RESUMO

Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.


Assuntos
Envelhecimento/imunologia , Microambiente Celular/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Envelhecimento/patologia , Animais , Humanos , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq
18.
FEBS J ; 288(22): 6331-6352, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33393204

RESUMO

Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.


Assuntos
Fibroblastos/metabolismo , Fibrose/metabolismo , Animais , Humanos
19.
bioRxiv ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33469586

RESUMO

Acute respiratory distress syndrome (ARDS) occurred in ~12% of hospitalized COVID-19 patients in a recent New York City cohort. Pulmonary endothelial dysfunction, characterized by increased expression of inflammatory genes and increased monolayer permeability, is a major component of ARDS. Vascular leak results in parenchymal accumulation of leukocytes, protein, and extravascular water, leading to pulmonary edema, ischemia, and activation of coagulation associated with COVID-19. Endothelial inflammation further contributes to uncontrolled cytokine storm in ARDS. We have recently demonstrated that Kruppel-like factor 2 (KLF2), a transcription factor which promotes endothelial quiescence and monolayer integrity, is significantly reduced in experimental models of ARDS. Lung inflammation and high-tidal volume ventilation result in reduced KLF2, leading to pulmonary endothelial dysfunction and acute lung injury. Mechanistically, we found that KLF2 is a potent transcriptional activator of Rap guanine nucleotide exchange factor 3 (RAPGEF3) which orchestrates and maintains vascular integrity. Moreover, KLF2 regulates multiple genome-wide association study (GWAS)-implicated ARDS genes. Whether lung KLF2 is regulated by SARS-CoV-2 infection is unknown. Here we report that endothelial KLF2 is significantly reduced in human lung autopsies from COVID-19 patients, which supports that ARDS due to SARS-CoV-2 is a vascular phenotype possibly attributed to KLF2 down-regulation. We provide additional data demonstrating that KLF2 is down-regulated in SARS-CoV infection in mice.

20.
J Med Virol ; 93(3): 1459-1464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790075

RESUMO

BACKGROUND: Tocilizumab (TCZ) has been used in the management of COVID-19-related cytokine release syndrome (CRS). Concerns exist regarding the risk of infections and drug-related toxicities. We sought to evaluate the incidence of these TCZ complications among COVID-19 patients. METHODS: All adult inpatients with COVID-19 between 1 March and 25 April 2020 that received TCZ were included. We compared the rate of late-onset infections (>48 hours following admission) to a control group matched according to intensive care unit admission and mechanical ventilation requirement. Post-TCZ toxicities evaluated included: elevated liver function tests (LFTs), GI perforation, diverticulitis, neutropenia, hypertension, allergic reactions, and infusion-related reactions. RESULTS: Seventy-four patients were included in each group. Seventeen infections in the TCZ group (23%) and 6 (8%) infections in the control group occurred >48 hours after admission (P = .013). Most infections were bacterial with pneumonia being the most common manifestation. Among patients receiving TCZ, LFT elevations were observed in 51%, neutropenia in 1.4%, and hypertension in 8%. The mortality rate among those that received TCZ was greater than the control (39% versus 23%, P = .03). CONCLUSION: Late onset infections were significantly more common among those receiving TCZ. Combining infections and TCZ-related toxicities, 61% of patients had a possible post-TCZ complication. While awaiting clinical trial results to establish the efficacy of TCZ for COVID-19 related CRS, the potential for infections and TCZ related toxicities should be carefully weighed when considering use.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Infecções Bacterianas/complicações , Tratamento Farmacológico da COVID-19 , COVID-19/complicações , Síndrome da Liberação de Citocina/tratamento farmacológico , Micoses/complicações , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/efeitos adversos , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Biomarcadores Farmacológicos/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/virologia , Feminino , Humanos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...