Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 232: 116226, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247651

RESUMO

The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.


Assuntos
Ciclídeos , Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Tilápia , Animais , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/análise , Poluentes Orgânicos Persistentes , Lagos , Zâmbia , DDT , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Fígado/química , Monitoramento Ambiental
2.
J Virol Methods ; 307: 114567, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35709972

RESUMO

Tilapia lake virus (TiLV) is an emerging viral pathogen of tilapiines worldwide in wild and farmed tilapia. TiLV is an orthomyxo-like, negative sense segmented RNA virus, belonging to genus Tilapinevirus, family Amnoonviridae. Here we developed a quantitative real-time PCR (qRT-PCR) assay testing primer sets targeting the 10 segments of TiLV. Sensitivity, specificity, efficiency and reproducibility of these assays were examined. Detection sensitivity was equivalent to 2 TCID50/ml when tested on supernatants from cell culture-grown TiLV. Specificity tests showed that all primer sets amplified their respective TiLV segments, and standard curves showed linear correlation of R2 > 0.998 and amplification efficiencies between 93 % and 98 %. Intra- and inter-assay coefficients of variation (CV %) were in the range of 0.0 %- 2.6 % and 0.0 %- 5.9 %, respectively. Sensitivity tests showed that primer sets targeting segments 1, 2, 3 and 4 had the highest detection sensitivities (100.301 TCID50/ml). The qRT-PCR used for detection of viral genome in TiLV infected organs gave virus titers equivalent to 3.80 log10, 3.94 log10 and 3.52 log10 TCID50/ml for brain, kidney and liver tissues, respectively as calculated on the basis of Ct values. These findings suggest that primer optimization for qPCR should not only focus on attaining high amplification efficiency but also sensitivity comparison of primer sets targeting different viral segments in order to develop a method with the highest sensitivity.


Assuntos
Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Vírus de RNA/isolamento & purificação , Tilápia , Animais , Animais Selvagens , Encéfalo/virologia , Pesqueiros , Rim/virologia , Fígado/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-34702139

RESUMO

The aim of this study was to assess the levels of heavy metals in both wild and farmed tilapia on Lake Kariba in Zambia and to evaluate the impact of intensive fish farming on wild tilapia. Three sites for wild fish (2 distant and 1 proximal to fish farms) and two fish farms were selected. One hundred fish (52 from distant sites; 20 near fish farms; 28 farmed fish) were sampled and muscle tissues excised for analysis of heavy metals (Mg, Fe, Zn, Al, Cu, Se, Co, Mo, As, Cr, V, Ni, Hg, Pb, Li, Cd, and Ag) by acid (HNO3) digestion and ICP-MS. All metals were found to be below the maximum limits (MLs) set by WHO/EU. Essential metals were higher in farmed tilapia, whereas non-essential metals were higher in wild tilapia. Significantly higher levels of essential metals were found in wild fish near the fish farms than those distant from the farms. Estimated weekly intake (EWI) for all metals were less than the provisional tolerable weekly intakes (PTWI). Target hazard quotients (THQ) and Hazard Indices (HI) were <1, indicating no health risks from a lifetime of fish consumption. Selenium Health Benefit Value (HBVSe) was positive for all locations, indicating protective effects of selenium against mercury in fish. Total cancer risk (CR) due to As, Cr, Cd, Ni and Pb was less than 1 × 10-4, indicating less than 1 in 10,000 carcinogenic risk from a lifetime consumption of tilapia from Lake Kariba. Hg levels (0.021 mg/kg) in wild tilapia at site 1 were higher than the Environmental quality standard (EQS = 0.020 mg/kg) set by EU, indicating possible risk of adverse effects to fish. Except for Hg, levels of metals in fish were safe for human consumption and had no adverse effects on fish.


Assuntos
Metais Pesados/análise , Músculos/química , Tilápia/metabolismo , Poluentes Químicos da Água/análise , Animais , Cobre/análise , Monitoramento Ambiental , Pesqueiros , Humanos , Ferro/análise , Lagos , Medição de Risco , Prata/análise , Zâmbia , Zinco/análise
4.
BMC Res Notes ; 14(1): 313, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399833

RESUMO

OBJECTIVES: Aeromonads cause severe diseases in farmed aquatic organisms. Herein, we examined 28 isolates causing disease in farmed aquatic organisms from India (n = 24) and Taiwan (n = 4) to gain insight of their genotypic and phenotypic properties. RESULTS: API 20NE biochemical phenotyping showed ≥ 90% similarity classifying all isolates as Aeromonas hydrophila. 16S rRNA genotyping showed ≥ 98% homology among all isolates with A. sobria (NR119044.1ATCC), A. veronii (MK990549.1), A. caviae (NR029252.1) and A. hydrophila (MG984625.1ATCC) and other reference strains. In contrast, gyrB showed a higher intraspecies diversity (≥ 96%) than 16S rRNA delineating the 28 isolates into three groups. Group-I consisted of seven Indian isolates clustered with A. sobria (MK484163.1ATCC), group-II comprised of five Indian and two Taiwanese isolates clustered with A. veronii AF417626.1ATCC while group-III had 11 Indian and three Taiwanese isolates grouped with A. hydrophila (AY987520.1 and DQ519366.1) reference strains. None of our isolates clustered with A. caviae (AJ868400.1ATCC) reference strain. These findings suggest that A. sobria, A. veronii and A. hydrophila could be the etiological agents of diseases observed in farmed fish and soft-shelled turtles (Pelodiscus sinensis) examined in this study. Overall, our findings accentuate the importance of combining phenotyping with genotyping for correct taxonomic classification of Aeromonas spp. in Aquaculture.


Assuntos
Aeromonas , Aeromonas/genética , Aeromonas hydrophila/genética , Animais , Índia , RNA Ribossômico 16S/genética , Taiwan
5.
Pathogens ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070735

RESUMO

Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.

6.
Vet Med Int ; 2021: 8896604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680422

RESUMO

In this study, fish farmers' management practices, occurrence, and knowledge of fish diseases in Nyeri County, Kenya, were evaluated. Fish farming management practices for small-scale farmers in Kenya have numerous challenges which have led to disease occurrence and reduced production. Moreover, the impact and association of these challenges to farmers' knowledge of fish diseases and their burden has not been fully studied. A semistructured questionnaire was used to capture farmers' biodata, fish species farmed, and farmers' management practices such as handling of nets, pond fertilization, and disposal of fish waste. Farmers' knowledge of fish diseases was based on their ability to identify independent and dependent variable indicators. Independent variables included clinical signs, decreased feeding, bulging eyes, floating on water, abdominal swelling, bulging eyes, abnormal skin color, reduced growth, and abnormal swimming with fish death as were the dependent variable. A total of 208 farmers were interviewed and included those of tilapia (134), mixed tilapia and catfish (40), catfish (22), rainbow trout, and five dams under cooperative management. Tilapia was the most kept fish species (66.8%) followed by polyculture of tilapia and catfish (20%) and rainbow trout (2%). Most respondents were male (78.5%) over 51 years of age (50%). Fifty percent of the respondents had secondary school education. There was a significant association between deaths and sharing of nets in Kieni East subcounty (p=0.0049, chi-square), while on-farm fish waste disposing appeared to cause higher deaths compared to burning of the waste although not statistically significant (p=0.13). Few respondents observed decreased feed uptake (<20%) and poor growth. Fifty-seven percent of farmers reported mortalities. Fish poor growth, floating in water, and management practices in subcounties had significant effect on fish deaths. The farmers had knowledge of signs of diseased fish, but there was paucity of knowing the specific causes of disease. Farmers need to be empowered on best aquaculture husbandry to avoid disease transmission and specific fish disease signs to enhance proper reporting of disease for subsequent mitigation measures.

7.
J Fish Dis ; 44(6): 721-727, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33522610

RESUMO

The pathogenesis of Lactococcus garvieae (L. garvieae) was assessed in Nile tilapia (Oreochromis niloticus) following administration by two different routes of infection (intraperitoneal versus immersion), using 180 fish divided into three groups. The first group of fish was injected intraperitoneally (IP) with 3 × 105 colony-forming units (cfu) of L. garvieae; the second group was infected by immersion (IMM) into water containing 9.6 × 105  cfu/ml L. garvieae, and in group 3 (Control), the fish were injected IP with sterile normal saline. Mortalities were recorded daily, and on 3, 5, 7, and 13 days post-infection (dpi), liver, kidney, spleen, brain and eyes were sampled. The level of infection between groups was assessed by number of mortalities that occurred, pathology/histopathology of internal organs, bacterial re-isolation and presence of bacteria in situ determined using immunohistochemistry. A significant difference (p < .0001) was observed between L. garvieae re-isolation from tilapia following administration by IP injection and IMM. Similarly, more clinical signs and mortalities (p < .001) were observed in the IP group compared to the IMM group where no mortalities were observed. These findings suggest that L. garvieae has a low invasive potential in Nile tilapia with intact skin/external barriers and highlights the importance of maintaining fish without cuts or abrasions under field conditions.


Assuntos
Ciclídeos , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/fisiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Lagos , Zâmbia
8.
Sci Rep ; 10(1): 20364, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230226

RESUMO

Tilapia lake virus (TiLV) causes high mortality and high economic losses in tilapines. We describe an experimental challenge study focusing on early post challenge innate immune responses. Nile tilapia (Oreochromis niloticus) were infected with 105 TCID50/mL TiLV intraperitoneally, followed by virus quantification, histopathology and gene expression analysis in target (brain/liver) and lymphoid (spleen/headkidney) organs at 3, 7, 12, 17, and 34 days post challenge (dpc). Onset of mortality was from 21 dpc, and cumulative mortality was 38.5% by 34 dpc. Liver and kidney histopathology developed over the period 3-17 dpc, characterized by anisocytosis, anisokaryocytosis, and formation of multinucleated hepatocytes. Viral loads were highest at early time (3 dpc) in liver, spleen and kidney, declining towards 34 dpc. In brain, viral titer peaked 17 dpc. Innate sensors, TLRs 3/7 were inversely correlated with virus titer in brain and headkidney, and IFN-ß and Mx showed a similar pattern. All organs showed increased mRNA IgM expression over the course of infection. Overall, high virus titers downplay innate responses, and an increase is seen when viral titers decline. In silico modeling found that TiLV segments 4, 5 and 10 carry nucleolar localization signals. Anti-viral effects of TiLV facilitate production of virus at early stage of infection.


Assuntos
Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Vírus de RNA de Sentido Negativo/patogenicidade , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/genética , Encéfalo/imunologia , Encéfalo/virologia , Ciclídeos/virologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/virologia , Imunoglobulina M/biossíntese , Imunoglobulina M/genética , Interferon beta/genética , Interferon beta/imunologia , Rim/imunologia , Rim/virologia , Fígado/imunologia , Fígado/virologia , Vírus de RNA de Sentido Negativo/crescimento & desenvolvimento , Vírus de RNA de Sentido Negativo/imunologia , Baço/imunologia , Baço/virologia , Análise de Sobrevida , Fatores de Tempo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
9.
PLoS One ; 15(3): e0230739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214386

RESUMO

The autovaccine was produced in-house using a bacterial isolate from a diseased fish from the target farm. Three groups of 150 fish each were injected with either 1) an oil-adjuvanted, inactivated whole cell autovaccine, 2) adjuvant only or 3) PBS (negative control). Approximately 660 degree days post vaccination, the fish were challenged with 9x105 cfu bacteria/fish by intraperitoneal injection and monitored for a further 28 days. Protection against infections was measured by lack of/reduced bacterial loads both by bacterial re-isolation and immunohistochemistry as well as absence of clinical signs/pathology. Significantly less L. garvieae (p<0.03) was re-isolated from either the adjuvant only or control groups compared to the vaccinated group. Furthermore, a significantly high amount (p<0.001) of anti-L. garvieae specific antibodies were observed in the vaccinated group compared to the adjuvant only or control groups at time of challenge. This coincided with protection against infection measured by absence/reduced L. garvieae re-isolation from internal organs, reduced clinical signs and lack of pathology in this group. In the adjuvant only and control groups, bacteria were re-isolated from the kidney, liver, spleen, brain and eyes during the first 14 days. The findings suggest that oil-based vaccines can protect tilapia against L. garvieae infection through an antibody mediated response.


Assuntos
Autovacinas/imunologia , Ciclídeos/imunologia , Ciclídeos/microbiologia , Doenças dos Peixes/prevenção & controle , Lactococcus/fisiologia , Animais , Autopsia , Doenças dos Peixes/patologia , Especificidade de Órgãos
10.
Viruses ; 11(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842425

RESUMO

Tilapia lake virus (TiLV) is a negative-sense single-stranded RNA (-ssRNA) icosahedral virus classified to be the only member in the family Amnoonviridae. Although TiLV segment-1 shares homology with the influenza C virus PB1 and has four conserved motifs similar to influenza A, B, and C polymerases, it is unknown whether there are other properties shared between TiLV and orthomyxovirus. In the present study, we wanted to determine whether TiLV agglutinated avian and piscine erythrocytes, and whether its replication was inhibited by lysosomotropic agents, such as ammonium chloride (NH4Cl), as seen for orthomyxoviruses. Our findings showed that influenza virus strain A/Puerto Rico/8 (PR8) was able to hemagglutinate turkey (Meleagris gallopavo), Atlantic salmon (Salmo salar L), and Nile tilapia (Oreochromis niloticus) red blood cells (RBCs), while infectious salmon anemia virus (ISAV) only agglutinated Atlantic salmon, but not turkey or tilapia, RBCs. In contrast to PR8 and ISAV, TiLV did not agglutinate turkey, Atlantic salmon, or tilapia RBCs. qRT-PCR analysis showed that 30 mM NH4Cl, a basic lysosomotropic agent, neither inhibited nor enhanced TiLV replication in E-11 cells. There was no difference in viral quantities in the infected cells with or without NH4Cl treatment during virus adsorption or at 1, 2, and 3 h post-infection. Given that hemagglutinin proteins that bind RBCs also serve as ligands that bind host cells during virus entry leading to endocytosis in orthomyxoviruses, the data presented here suggest that TiLV may use mechanisms that are different from orthomyxoviruses for entry and replication in host cells. Therefore, future studies should seek to elucidate the mechanisms used by TiLV for entry into host cells and to determine its mode of replication in infected cells.


Assuntos
Cloreto de Amônio/farmacologia , Eritrócitos/virologia , Doenças dos Peixes/virologia , Hemaglutinação por Vírus , Fenômenos Fisiológicos Virais , Vírus/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos
11.
Viruses ; 11(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554184

RESUMO

Tilapia is the second most farmed fish species after carp in the world. However, the production has come under threat due to emerging diseases such as tilapia lake virus (TiLV) that causes massive mortalities with high economic losses. It is largely unknown whether different tilapia strains are equally susceptible to TiLV infection. In the present study we compared the susceptibility of gray (Oreochromis niloticus x O. aureus) and red tilapia (Oreochromis spp.) to experimental TiLV infection. Virus was injected intraperitoneally at a concentration of 104 TCID50/mL. Our findings show that gray tilapia had a lower mortality, 86.44%, but statistically not significantly different (p = 0.068) from red tilapia (100%). The duration of the mortality period from onset to cessation was similar for the two species, starting at 2-3 days post challenge (dpc) with a median at 10-11 dpi and ending on 20-22 dpi. In addition, there was no difference between species in mean viral loads in brain, liver and headkidney from fish collected soon after death. As for host response, expression levels of IL-1ß and TNFα were equally high in brain and headkidney samples while levels in liver samples were low for both red and gray tilapia, which coincides with lower viral loads in liver compared to brain and headkidney for both species. We find that red and gray tilapia were equally susceptible to TiLV infection with similar post challenge mortality levels, equal virus concentration in target organs and similar proinflammatory cytokine responses in target and lymphoid organs at time of death. Nonetheless, we advocate that the search for less susceptible tilapia strains should continue with the view to reduce losses from TiLV infection in aquaculture.


Assuntos
Doenças dos Peixes/virologia , Vírus de RNA/patogenicidade , Tilápia/virologia , Animais , Aquicultura , Citocinas/genética , Suscetibilidade a Doenças , Doenças dos Peixes/imunologia , Doenças dos Peixes/mortalidade , Expressão Gênica , Análise de Sobrevida , Carga Viral
12.
J Fish Dis ; 42(6): 835-850, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851008

RESUMO

The genus Edwardsiella is one of the major causes of fish diseases globally. Herein, we examined 37 isolates from ten different fish species from India, South Korea and Taiwan to gain insight into their phenotypic and genotypic properties, of which 30 were characterized as E. tarda with phenotypic homology estimated at 85.71% based on API-20E biochemical tests. Genotyping using 16S rRNA put all isolates together with E. anguillarum, E. hoshinae, E. tarda, E. piscicida and E. ictaluri reference strains in a monophyletic group. In contrast, the gyrB phylogenetic tree clearly separated E. ictaluri, E. tarda and E. hoshinae reference strains from our isolates and put our isolates into two groups with group I being homologous with the E. anguillarum reference strain while group II was homologous with the E. piscicida reference strain. Hence, our findings point to E. piscicida and E. anguillarum as species infecting different fish species in Asia. Homology of the ompW protein suggested that strains with broad protective coverage could be identified as vaccine candidates. This study underscores the importance of combining genotyping with phenotyping for valid species classification. In addition, it accentuates the importance of phylogenetic comparison of bacterial antigens for identification of potential vaccine candidates.


Assuntos
Edwardsiella/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Animais , Aquicultura , Ásia/epidemiologia , Vacinas Bacterianas , DNA Bacteriano/genética , Surtos de Doenças , Edwardsiella/isolamento & purificação , Edwardsiella tarda/genética , Infecções por Enterobacteriaceae/epidemiologia , Doenças dos Peixes/epidemiologia , Genótipo , Geografia , Índia/epidemiologia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia , Análise de Sequência de DNA
13.
J Fish Dis ; 42(5): 751-758, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30805926

RESUMO

Infectious haematopoietic necrosis virus (IHNV) is the causative agent of infectious haematopoietic necrosis, a disease of salmonid responsible for great economic losses. The disease occurs in most parts of the world where rainbow trout is reared but has not been previously reported in Kenya. In this study, rainbow trout fry and growers from two farms in Nyeri County were screened for IHNV. Whole fry (n = 4 from each farm) and kidney samples from growers (n = 15 and n = 6 from the two farms, respectively) were collected and preserved for cell culture examination or PCR analysis. Screening of samples was done by PCR followed by sequencing of the glycoprotein gene of the virus. Demonstration of the virus was done by propagation in EPC cells followed by the indirect fluorescence antibody test (IFAT). The results revealed the presence of IHNV at low prevalence of 0.1 and 0.4 for the two farms. The virus was confirmed both by IFAT and by partial sequencing of the G gene. Phylogenetic analysis revealed that the Kenyan isolates were identical to those of the J genogroup found mostly in Asia. The findings have implications for biosecurity measures and import regulations for the Kenyan rainbow trout industry.


Assuntos
Doenças dos Peixes/epidemiologia , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Oncorhynchus mykiss , Infecções por Rhabdoviridae/veterinária , Animais , Aquicultura , Doenças dos Peixes/virologia , Genótipo , Glicoproteínas/análise , Vírus da Necrose Hematopoética Infecciosa/genética , Quênia/epidemiologia , Filogenia , Prevalência , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Análise de Sequência de DNA/veterinária , Proteínas Virais/análise
14.
J Aquat Anim Health ; 31(1): 23-30, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30291645

RESUMO

The present study was conducted to explore the occurrence of Flavobacteriaceae in wild Nile Tilapia Oreochromis niloticus (n = 108) collected from Lake Victoria and farmed Nile Tilapia (n = 187) collected from 12 ponds in the Morogoro region of Tanzania. The size of the ponds surveyed ranged from 130 to 150 m2 . Pond parameters and fish morphometric data were recorded during sampling. In total, 67 Flavobacterium-like isolates (n = 44 from farmed fish; n = 23 from wild fish) were identified on the basis of colony morphology and biochemical tests. Sequences from the 16S ribosomal RNA (rRNA) gene revealed that all 67 isolates belonged to the genera Flavobacterium and Chryseobacterium. Based on 16S rRNA nucleotide identity, 26 isolates showed high similarity with C. indologenes (99-100% identity), 16 showed similarity to C. joostei (98-99.9%), and 17 were similar to diverse species of Chryseobacterium (97-99%). Three isolates were similar to F. aquatile and three were similar to F. indicum, with 99-100% nucleotide identity in both cases, and two isolates were similar to F. oryzae (99-100% identity). The findings obtained in this study provide a baseline for future studies and contribute to an understanding of the threats presented by the aquatic Flavobacteriaceae reservoir toward the development of healthy fish farming in Tanzania. Such knowledge is vital for the development of a sustainable aquaculture industry in Tanzania that will contribute to increased food security.


Assuntos
Chryseobacterium/isolamento & purificação , Ciclídeos , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Animais , Animais Selvagens , Aquicultura , Chryseobacterium/genética , Estudos Transversais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Filogenia , Prevalência , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Tanzânia/epidemiologia
15.
Toxins (Basel) ; 10(12)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562952

RESUMO

Aflatoxins are fungal metabolites that contaminate foods and feeds, causing adverse health effects in humans and animals. This study determined the occurrence of aflatoxins in fish feeds and their potential effects on fish. Eighty-one fish feeds were sampled from 70 farms and 8 feed manufacturing plants in Nyeri, Kenya for aflatoxin analysis using competitive enzyme-linked immunosorbent assay. Fish were sampled from 12 farms for gross and microscopic pathological examination. Eighty-four percent of feeds sampled tested positive for aflatoxins, ranging from 1.8 to 39.7 µg/kg with a mean of 7.0 ± 8.3 µg/kg and the median of 3.6 µg/kg. Fifteen feeds (18.5%) had aflatoxins above the maximum allowable level in Kenya of 10 µg/kg. Homemade and tilapia feeds had significantly higher aflatoxin levels than commercial and trout feeds. Feeds containing maize bran and fish meal had significantly higher aflatoxin levels than those without these ingredients. Five trout farms (41.7%) had fish with swollen abdomens, and enlarged livers with white or yellow nodules, which microscopically had large dark basophilic hepatic cells with hyperchromatic nuclei in irregular cords. In conclusion, aflatoxin contamination of fish feeds is prevalent in Nyeri, and may be the cause of adverse health effects in fish in this region.


Assuntos
Aflatoxinas/análise , Ração Animal/análise , Contaminação de Alimentos/análise , Aflatoxinas/toxicidade , Ração Animal/efeitos adversos , Animais , Monitoramento Ambiental , Produtos Pesqueiros , Peixes , Quênia , Fígado/efeitos dos fármacos , Fígado/patologia , Zea mays
16.
J Fish Dis ; 41(10): 1589-1600, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30074242

RESUMO

A multilocus sequence analysis (MLSA) was carried out to delineate Aeromonas hydrophila from fish in Uganda. Five housekeeping genes including recA, gyrB, metG, gltA and pps; and the 16S rRNA gene were amplified and sequenced from a total of nine A. hydrophila isolates. The obtained sequences were edited, and consensus sequences generated for each gene locus. The housekeeping gene sequences were concatenated and phylogenetic analysis performed in MEGA version 7.0.2. Pairwise distances ranged from 0.000 to 0.118, highest within the gltA gene locus and lowest within the 16S rRNA gene. The average evolutionary diversity within isolates from the same source ranged between 0.002 and 0.037, and it was 0.033 between the different sources. Similar tree topologies were obtained from the different gene loci with recA, metG and gyrB being more consistent in discriminating isolates according to sources while the 16S rRNA gene had the lowest resolution. The concatenated tree had the highest discriminatory power. This study revealed that A. hydrophila strains infecting fish in Uganda are of diverse genotypes suggesting different sources of infection in a given outbreak. Efforts to minimize spread of the bacteria across sources should be emphasized to control infections of mixed genotypes.


Assuntos
Aeromonas hydrophila/genética , Variação Genética , Genótipo , Infecções por Bactérias Gram-Negativas/veterinária , Tipagem de Sequências Multilocus/métodos , Filogenia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Ribossômico/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Genes Essenciais , Infecções por Bactérias Gram-Negativas/epidemiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Uganda/epidemiologia
17.
Ecotoxicol Environ Saf ; 154: 19-26, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453161

RESUMO

The biological effects of gamma radiation may exert damage beyond that of the individual through its deleterious effects on reproductive function. Impaired reproductive performance can result in reduced population size over consecutive generations. In a continued effort to investigate reproductive and heritable effects of ionizing radiation, we recently demonstrated adverse effects and genomic instability in progeny of parents exposed to gamma radiation. In the present study, genotoxicity and effects on the reproduction following subchronic exposure during a gametogenesis cycle to 60Co gamma radiation (27 days, 8.7 and 53 mGy/h, total doses 5.2 and 31 Gy) were investigated in the adult wild-type zebrafish (Danio rerio). A significant reduction in embryo production was observed one month after exposure in the 53 mGy/h exposure group compared to control and 8.7 mGy/h. One year later, embryo production was significantly lower in the 53 mGy/h group compared only to control, with observed sterility, accompanied by a regression of reproductive organs in 100% of the fish 1.5 years after exposure. Histopathological examinations revealed no significant changes in the testis in the 8.7 mGy/h group, while in 62.5% of females exposed to this dose rate the oogenesis was found to be only at the early previtellogenic stage. The DNA damage determined in whole blood, 1.5 years after irradiation, using a high throughput Comet assay, was significantly higher in the exposed groups (1.2 and 3-fold increase in 8.7 and 53 mGy/h females respectively; 3-fold and 2-fold increase in 8.7 and 53 mGy/h males respectively) compared to controls. A significantly higher number of micronuclei (4-5%) was found in erythrocytes of both the 8.7 and 53 mGy/h fish compared to controls. This study shows that gamma radiation at a dose rate of ≥ 8.7 mGy/h during gametogenesis causes adverse reproductive effects and persistent genotoxicity (DNA damage and increased micronuclei) in adult zebrafish.


Assuntos
Dano ao DNA , Gametogênese/efeitos da radiação , Raios gama/efeitos adversos , Reprodução/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Ensaio Cometa , Relação Dose-Resposta à Radiação , Feminino , Gametogênese/genética , Instabilidade Genômica/efeitos da radiação , Masculino , Óvulo/efeitos da radiação , Reprodução/genética , Testículo/efeitos da radiação , Peixe-Zebra/crescimento & desenvolvimento
18.
Environ Res ; 159: 564-578, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892785

RESUMO

Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.


Assuntos
Gametogênese/efeitos da radiação , Raios gama/efeitos adversos , Instabilidade Genômica/efeitos da radiação , Reprodução/efeitos da radiação , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/efeitos da radiação , Peixe-Zebra/genética
19.
Front Microbiol ; 8: 406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382024

RESUMO

The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.

20.
Vaccines (Basel) ; 4(4)2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27827990

RESUMO

The use of oral vaccination in finfish has lagged behind injectable vaccines for a long time as oral vaccines fall short of injection vaccines in conferring protective immunity. Biodegradable polymeric nanoparticles (NPs) have shown potential to serve as antigen delivery systems for oral vaccines. In this study the recombinant outer membrane protein A (rOmpA) of Edwardsiella tarda was encapsulated in chitosan NPs (NP-rOmpA) and used for oral vaccination of Labeo fimbriatus. The rOmpA purity was 85%, nanodiameter <500 nm, encapsulation efficiency 60.6%, zeta potential +19.05 mV, and there was an in vitro release of 49% of encapsulated antigen within 48 h post incubation in phosphate-buffered saline. Empty NPs and a non-formulated, inactivated whole cell E. tarda (IWC-ET) vaccine were used as controls. Post-vaccination antibody levels were significantly (p = 0.0458) higher in the NP-rOmpA vaccinated fish (Mean OD450 = 2.430) than in fish vaccinated with inactivated whole cell E. tarda (IWC-ET) vaccine (Mean OD450 = 1.735), which corresponded with post-challenge survival proportions (PCSP) of 73.3% and 48.28% for the NP-rOmpA and IWC-ET groups, respectively. Serum samples from NP-rOmpA-vaccinated fish had a higher inhibition rate for E. tarda growth on tryptic soy agar (TSA) than the IWC-ET group. There was no significant difference (p = 0.989) in PCSPs between fish vaccinated with empty NPs and the unvaccinated control fish, while serum from both groups showed no detectable antibodies against E. tarda. Overall, these data show that the NP-rOmpA vaccine produced higher antibody levels and had superior protection over the IWC-ET vaccine, showing that encapsulating OmpA in chitosan NPs confer improved protection against E. tarda mortality in L. fimbriatus. There is a need to elucidate the possible adjuvant effects of chitosan NPs and the immunological mechanisms of protective immunity induced by OMPs administered orally to fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...