Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
PLoS Pathog ; 19(4): e1010650, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115804

RESUMO

Paratyphoid fever caused by S. Paratyphi A is endemic in parts of South Asia and Southeast Asia. The proportion of enteric fever cases caused by S. Paratyphi A has substantially increased, yet only limited data is available on the population structure and genetic diversity of this serovar. We examined the phylogenetic distribution and evolutionary trajectory of S. Paratyphi A isolates collected as part of the Indian enteric fever surveillance study "Surveillance of Enteric Fever in India (SEFI)." In the study period (2017-2020), S. Paratyphi A comprised 17.6% (441/2503) of total enteric fever cases in India, with the isolates highly susceptible to all the major antibiotics used for treatment except fluoroquinolones. Phylogenetic analysis clustered the global S. Paratyphi A collection into seven lineages (A-G), and the present study isolates were distributed in lineages A, C and F. Our analysis highlights that the genome degradation events and gene acquisitions or losses are key molecular events in the evolution of new S. Paratyphi A lineages/sub-lineages. A total of 10 hypothetically disrupted coding sequences (HDCS) or pseudogenes-forming mutations possibly associated with the emergence of lineages were identified. The pan-genome analysis identified the insertion of P2/PSP3 phage and acquisition of IncX1 plasmid during the selection in 2.3.2/2.3.3 and 1.2.2 genotypes, respectively. We have identified six characteristic missense mutations associated with lipopolysaccharide (LPS) biosynthesis genes of S. Paratyphi A, however, these mutations confer only a low structural impact and possibly have minimal impact on vaccine effectiveness. Since S. Paratyphi A is human-restricted, high levels of genetic drift are not expected unless these bacteria transmit to naive hosts. However, public-health investigation and monitoring by means of genomic surveillance would be constantly needed to avoid S. Paratyphi A serovar becoming a public health threat similar to the S. Typhi of today.


Assuntos
Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Salmonella typhi/genética , Filogenia , Salmonella paratyphi A/genética , Antibacterianos , Genômica
3.
Microbiol Spectr ; : e0492522, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847537

RESUMO

In recent times, discovery efforts for novel antibiotics have mostly targeted carbapenemase-producing Gram-negative organisms. Two different combination approaches are pertinent: ß-lactam-ß-lactamase inhibitor (BL/BLI) or ß-lactam-ß-lactam enhancer (BL/BLE). Cefepime combined with a BLI, taniborbactam, or with a BLE, zidebactam, has been shown to be promising. In this study, we determined the in vitro activity of both these agents along with comparators against multicentric carbapenemase-producing Enterobacterales (CPE). Nonduplicate CPE isolates of Escherichia coli (n = 270) and Klebsiella pneumoniae (n = 300), collected from nine different tertiary-care hospitals across India during 2019 to 2021, were included in the study. Carbapenemases in these isolates were detected by PCR. E. coli isolates were also screened for the presence of the 4-amino-acid insert in penicillin binding protein 3 (PBP3). MICs were determined by reference broth microdilution. Higher MICs of cefepime/taniborbactam (>8 mg/L) were linked to NDM, both in K. pneumoniae and in E. coli. In particular, such higher MICs were observed in 88 to 90% of E. coli isolates producing NDM and OXA-48-like or NDM alone. On the other hand, OXA-48-like-producing E. coli or K. pneumoniae isolates were nearly 100% susceptible to cefepime/taniborbactam. Regardless of the carbapenemase types and the pathogens, cefepime/zidebactam showed potent activity (>99% inhibited at ≤8 mg/L). It seems that the 4-amino-acid insert in PBP3 (present universally in the study E. coli isolates) along with NDM adversely impact the activity of cefepime/taniborbactam. Thus, the limitations of the BL/BLI approach in tackling the complex interplay of enzymatic and nonenzymatic resistance mechanisms were better revealed in whole-cell studies where the activity observed was a net effect of ß-lactamase inhibition, cellular uptake, and target affinity of the combination. IMPORTANCE The study revealed the differential ability of cefepime/taniborbactam and cefepime/zidebactam in tackling carbapenemase-producing Indian clinical isolates that also harbored additional mechanisms of resistance. NDM-expressing E. coli with 4-amino-acid insert in PBP3 are predominately resistant to cefepime/taniborbactam, while the ß-lactam enhancer mechanism-based cefepime/zidebactam showed consistent activity against single- or dual-carbapenemase-producing isolates including E. coli with PBP3 inserts.

5.
Ann Indian Acad Neurol ; 26(6): 908-916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38229613

RESUMO

Objectives: Recent advancement in understanding neurological disorders has revealed the involvement of dysbiosis of the gut microbiota in the pathophysiology of Parkinson's disease (PD). We sequenced microbial DNA using fecal samples collected from PD cases and healthy controls (HCs) to evaluate the role of gut microbiota. Methods: Full-length bacterial 16S rRNA gene sequencing of fecal samples was performed using amplified polymerase chain reaction (PCR) products on the GridION Nanopore sequencer. Sequenced data were analyzed using web-based tools BugSeq and MicrobiomeAnalyst. Results: We found that certain bacterial families like Clostridia UCG 014, Cristensenellaceae, and Oscillospiraceae are higher in abundance, and Lachinospiracea, Coriobacteriaceae and genera associated with short-chain fatty acid production, Faecalibacterium, Fusicatenibacter, Roseburia and Blautia, are lower in abundance among PD cases when compared with the HC. Genus Akkermansia, Dialister, Bacteroides, and Lachnospiraceae NK4A136 group positively correlated with constipation in PD. Conclusion: Observations from this study support the other global research on the PD gut microbiome background and provide fresh insight into the gut microbial composition of PD patients from a south Indian population. We report a higher abundance of Clostridia UCG 014 group, previously not linked to PD.

6.
Gene ; 847: 146857, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100116

RESUMO

Helicobacter pylori is a ubiquitous bacterium and contributes significantly to the burden of chronic gastritis, peptic ulcers, and gastric cancer across the world. Adaptive phenotypes and virulence factors in H. pylori are heterogeneous and dynamic. However, limited information is available about the molecular nature of antimicrobial resistance phenotypes and virulence factors of H. pylori strains circulating in India. In the present study, we analyzed the whole genome sequences of 143 H. pylori strains, of which 32 are isolated from two different regions (eastern and southern) of India. Genomic repertoires of individual strains show distinct region-specific signatures. We observed lower resistance phenotypes and genotypes in the East Indian (Kolkata) H. pylori isolates against amoxicillin and furazolidone antibiotics, whereas higher resistance phenotypes to metronidazole and clarithromycin. Also, at molecular level, a greater number of AMR genes were observed in the east Indian H. pylori isolates as compared to the southern Indian isolates. From our findings, we suggest that metronidazole and clarithromycin antibiotics should be used judicially in the eastern India. However, no horizontally acquired antimicrobial resistance gene was observed in the current H. pylori strains. The comparative genome analysis shows that the number of genes involved in virulence, disease and resistance of H. pylori isolated from two different regions of India is significantly different. Single-nucleotide polymorphisms (SNPs) based phylogenetic analysis distinguished H. pylori strains into different clades according to their geographical locations. Conditionally beneficial functions including antibiotic resistance phenotypes that are linked with faster evolution rates in the Indian isolates.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Amoxicilina , Antibacterianos/farmacologia , Claritromicina/farmacologia , Farmacorresistência Bacteriana/genética , Furazolidona , Genômica , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Metronidazol , Testes de Sensibilidade Microbiana , Filogenia , Fatores de Virulência , Polimorfismo de Nucleotídeo Único
7.
Nat Commun ; 13(1): 3864, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790755

RESUMO

Cholera is a life-threatening infectious disease that remains an important public health issue in several low and middle-income countries. In 1992, a newly identified O139 Vibrio cholerae temporarily displaced the O1 serogroup. No study has been able to answer why the potential eighth cholera pandemic (8CP) causing V. cholerae O139 emerged so successfully and then died out. We conducted a genomic study, including 330 O139 isolates, covering emergence of the serogroup in 1992 through to 2015. We noted two key genomic evolutionary changes that may have been responsible for the disappearance of genetically distinct but temporally overlapping waves (A-C) of O139. Firstly, as the waves progressed, a switch from a homogenous toxin genotype in wave-A to heterogeneous genotypes. Secondly, a gradual loss of antimicrobial resistance (AMR) with the progression of waves. We hypothesize that these two changes contributed to the eventual epidemiological decline of O139.


Assuntos
Cólera , Vibrio cholerae O139 , Vibrio cholerae , Cólera/epidemiologia , Toxina da Cólera/genética , Humanos , Pandemias , Vibrio cholerae/genética , Vibrio cholerae O139/genética
8.
PLoS One ; 17(7): e0267805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867662

RESUMO

Enteric fever infections remain a significant public health issue, with up to 20 million infections per year. Increasing rates of antibiotic resistant strains have rendered many first-line antibiotics potentially ineffective. Genotype 4.3.1 (H58) is the main circulating lineage of S. Typhi in many South Asian countries and is associated with high levels of antibiotic resistance. The emergence and spread of extensively drug resistant (XDR) typhoid strains has increased the need for a rapid molecular test to identify and track these high-risk lineages for surveillance and vaccine prioritisation. Current methods require samples to be cultured for several days, followed by DNA extraction and sequencing to determine the specific lineage. We designed and evaluated the performance of a new multiplex PCR assay, targeting S. Paratyphi A as well as the H58 and XDR lineages of S. Typhi on a collection of bacterial strains. Our assay was 100% specific for the identification of lineage specific S. Typhi and S. Paratyphi A, when tested with a mix of non-Typhi Salmonella and non-Salmonella strains. With additional testing on clinical and environmental samples, this assay will allow rapid lineage level detection of typhoid of clinical significance, at a significantly lower cost to whole-genome sequencing. To our knowledge, this is the first report of a SNP-based multiplex PCR assay for the detection of lineage specific serovars of Salmonella Typhi.


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Antibacterianos/farmacologia , Humanos , Reação em Cadeia da Polimerase Multiplex , Salmonella paratyphi A/genética , Salmonella typhi , Febre Tifoide/epidemiologia
9.
Lancet Microbe ; 3(8): e567-e577, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750070

RESUMO

BACKGROUND: The emergence of increasingly antimicrobial-resistant Salmonella enterica serovar Typhi (S Typhi) threatens to undermine effective treatment and control. Understanding where antimicrobial resistance in S Typhi is emerging and spreading is crucial towards formulating effective control strategies. METHODS: In this genomic epidemiology study, we sequenced the genomes of 3489 S Typhi strains isolated from prospective enteric fever surveillance studies in Nepal, Bangladesh, Pakistan, and India (between 2014 and 2019), and combined these with a global collection of 4169 S Typhi genome sequences isolated between 1905 and 2018 to investigate the temporal and geographical patterns of emergence and spread of antimicrobial-resistant S Typhi. We performed non-parametric phylodynamic analyses to characterise changes in the effective population size of fluoroquinolone-resistant, extensively drug-resistant (XDR), and azithromycin-resistant S Typhi over time. We inferred timed phylogenies for the major S Typhi sublineages and used ancestral state reconstruction methods to estimate the frequency and timing of international and intercontinental transfers. FINDINGS: Our analysis revealed a declining trend of multidrug resistant typhoid in south Asia, except for Pakistan, where XDR S Typhi emerged in 2016 and rapidly replaced less-resistant strains. Mutations in the quinolone-resistance determining region (QRDR) of S Typhi have independently arisen and propagated on at least 94 occasions, nearly all occurring in south Asia. Strains with multiple QRDR mutations, including triple mutants with high-level fluoroquinolone resistance, have been increasing in frequency and displacing strains with fewer mutations. Strains containing acrB mutations, conferring azithromycin resistance, emerged in Bangladesh around 2013 and effective population size of these strains has been steadily increasing. We found evidence of frequent international (n=138) and intercontinental transfers (n=59) of antimicrobial-resistant S Typhi, followed by local expansion and replacement of drug-susceptible clades. INTERPRETATION: Independent acquisition of plasmids and homoplastic mutations conferring antimicrobial resistance have occurred repeatedly in multiple lineages of S Typhi, predominantly arising in south Asia before spreading to other regions. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Anti-Infecciosos , Quinolonas , Febre Tifoide , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Genômica , Humanos , Estudos Prospectivos , Quinolonas/farmacologia , Salmonella typhi/genética , Febre Tifoide/tratamento farmacológico
10.
mBio ; 13(3): e0015722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35536001

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children in low- and middle-income countries (LMICs). However, large-scale pathogen burden studies in children have identified ETEC in the guts of both symptomatic patients and controls. The factors that influence this balance are poorly understood, but it is postulated that the gut microbiome may play a role in either resistance or progression to disease. In this study, we profiled the microbiomes of children and adults from Bangladesh who were asymptomatically or symptomatically infected with ETEC. Symptomatic patients had significantly higher numbers of sequenced reads mapping to both E. coli and two ETEC toxins, suggesting higher bacterial burden. They were also significantly more likely to be coinfected with enteroaggregative E. coli (EAEC) and had higher proportions of other Gammaproteobacteria, including Klebsiella, Salmonella, and Haemophilus. Colonization with ETEC was also associated with increased prevalence of antimicrobial resistance (AMR) genes, most notably those of the ß-lactamase class. Taxonomic profiles were distinctly different between all groups in both species richness and composition, although the direction of these changes was different in adults and children. As seen previously, children with high E. coli burdens also had higher proportions of Streptococcus spp., while healthy children were more heavily colonized by Bifidobacterium spp. Our study provides insight into the microbiome changes that occur upon infection with ETEC in an endemic setting and provides rationale for future studies investigating how the microbiome may protect or predispose individuals to symptomatic infections with gastrointestinal pathogens. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children in low- and middle-income countries. However, these bacteria are often identified in both patients and healthy controls. We do not yet understand why only some people get sick, but it has been suggested that the gut microbiome might play a role. In this study, we used metagenomic sequencing to profile the gut microbiomes of individuals in Bangladesh, with or without a symptomatic ETEC infection. In general, individuals with high levels of ETEC also harbored other pathogenic E. coli strains, higher proportions of Gammaproteobacteria such as Salmonella and Klebsiella, and a higher burden of antimicrobial resistance genes in their guts. Healthy children, in contrast, had higher levels of bifidobacteria. These data confirm that the composition of the gut microbiome is different between symptomatic and asymptomatic people and provides important preliminary information on the impact of the gut microbiome in intestinal infections.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Microbiota , Adulto , Bactérias/genética , Criança , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/microbiologia , Humanos
11.
Folia Microbiol (Praha) ; 67(5): 693-706, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35583791

RESUMO

Advanced research in health science has broadened our view in approaching and understanding the pathophysiology of diseases and has also revolutionised diagnosis and treatment. Ever since the establishment of Braak's hypothesis in the propagation of alpha-synuclein from the distant olfactory and enteric nervous system towards the brain in Parkinson's Disease (PD), studies have explored and revealed the involvement of altered gut microbiota in PD. This review recapitulates the gut microbiome associated with PD severity, duration, motor and non-motor symptoms, and antiparkinsonian treatment from recent literature. Gut microbial signatures in PD are potential predictors of the disease and are speculated to be used in early diagnosis and treatment. In brief, the review also emphasises on implications of the prebiotic, probiotic, faecal microbiota transplantation, and dietary interventions as alternative treatments in modulating the disease symptoms in PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Antiparkinsonianos , Encéfalo , Microbioma Gastrointestinal/fisiologia , Humanos , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo
12.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35029310

RESUMO

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Assuntos
COVID-19 , Vacinas contra Influenza , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Saúde Global , Humanos , Pandemias/prevenção & controle , Vacinas/uso terapêutico
13.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962259

RESUMO

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , SARS-CoV-2 , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , SARS-CoV-2/química , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
14.
PLoS One ; 16(12): e0261435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910778

RESUMO

Diphtheria is caused by a toxigenic bacterium Corynebacterium diphtheria which is being an emerging pathogen in India. Since diphtheria morbidity and mortality continues to be high in the country, the present study aimed to study the molecular epidemiology of C. diphtheriae strains from India. A total of 441 diphtheria suspected specimens collected as part of the surveillance programme between 2015 and 2020 were studied. All the isolates were confirmed as C. diphtheriae with standard biochemical tests, ELEK's test, and real-time PCR. Antimicrobial susceptibility testing for the subset of isolates showed intermediate susceptibility to penicillin and complete susceptible to erythromycin and cefotaxime. Isolates were characterized using multi locus sequence typing method. MLST analysis for the 216 C. diphtheriae isolates revealed major diversity among the sequence types. A total of 34 STs were assigned with majority of the isolates belonged to ST466 (30%). The second most common ST identified was ST405 that was present in 14% of the isolates. The international clone ST50 was also seen. The identified STs were grouped into 8 different clonal complexes (CC). The majority belongs to CC5 followed by CC466, CC574 and CC209, however a single non-toxigenic strain belongs to CC42. This epidemiological analysis revealed the emergence of novel STs and the clones with better dissemination properties. This study has also provided information on the circulating strains of C. diphtheriae among the different regions of India. The molecular data generated through surveillance system can be utilized for further actions in concern.


Assuntos
Antibacterianos/farmacologia , Corynebacterium diphtheriae/classificação , Corynebacterium diphtheriae/efeitos dos fármacos , Monitoramento Epidemiológico , Cefotaxima/farmacologia , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/isolamento & purificação , Difteria/epidemiologia , Eritromicina/farmacologia , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Penicilinas/farmacologia
15.
Genomics ; 113(6): 3951-3966, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619341

RESUMO

Microbes evolve rapidly by modifying their genome through mutations or acquisition of genetic elements. Antimicrobial resistance in Helicobacter pylori is increasingly prevalent in India. However, limited information is available about the genome of resistant H. pylori isolated from India. Our pan- and core-genome based analyses of 54 Indian H. pylori strains revealed plasticity of its genome. H. pylori is highly heterogenous both in terms of the genomic content and DNA sequence homology of ARGs and virulence factors. We observed that the H. pylori strains are clustered according to their geographical locations. The presence of point mutations in the ARGs and absence of acquired genetic elements linked with ARGs suggest target modifications are the primary mechanism of its antibiotic resistance. The findings of the present study would help in better understanding the emergence of drug-resistant H. pylori and controlling gastric disorders by advancing clinical guidance on selected treatment regimens.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Virulência/genética
16.
Microb Genom ; 7(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714228

RESUMO

We investigated the evolution, phylogeny and antimicrobial resistance of Vibrio cholerae O1 isolates (VCO1) from Ghana. Outbreak and environmental sources of VCO1 were characterized, whole-genome sequenced and compared to globally available seventh pandemic (7P) strains of V. cholerae at SNP resolution. Final analyses included 636 isolates. Novel Ghanaian isolates clustered into three distinct clades (clades 1, 2 and 3) in wave 3 of the 7P lineage. The closest relatives of our novel Ghanaian isolates were from Benin, Cameroon, Togo, Niger and Nigeria. All novel Ghanaian isolates were multi-drug resistant. Environmental isolates clustered into clade 2, despite being isolated years later, showing the possibility of persistence and re-emergence of older clades. A lag phase of several years from estimated introduction to reported cases suggests pathogen persistence in the absence of reported cholera cases. These results highlight the importance of deeper surveillance for understanding transmission routes between bordering countries and planning tailored vaccination campaigns in an effort to eradicate cholera.


Assuntos
Cólera/microbiologia , Resistência Microbiana a Medicamentos , Vibrio cholerae O1/classificação , Sequenciamento Completo do Genoma/métodos , Benin , Camarões , Evolução Molecular , Genoma Bacteriano , Gana , Humanos , Testes de Sensibilidade Microbiana , Níger , Nigéria , Filogenia , Filogeografia , Togo , Vibrio cholerae O1/isolamento & purificação
17.
Indian J Med Microbiol ; 39(4): 417-422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454775

RESUMO

BACKGROUND: Following a relatively mild first wave of coronavirus disease 2019 (COVID-19) in India, a deadly second wave of the pandemic overwhelmed the healthcare system due to the emergence of fast-transmitting SARS-CoV-2 genetic variants. The emergence and spread of the B.1.617.2/Delta variant considered to be driving the devastating second wave of COVID-19 in India. Currently, the Delta variant has rapidly overtaken the previously circulating variants to become the dominant strain. Critical mutations in the spike/RBD region of these variants have raised serious concerns about the virus's increased transmissibility and decreased vaccine effectiveness. As a result, significant scientific and public concern has been expressed about the impact of virus variants on COVID-19 vaccines. OBJECTIVES: The purpose of this article is to provide an additional explanation in the context of the evolutionary trajectory of SARS-CoV-2 variants in India, the vaccine-induced immune response to the variants of concern (VOC), and various vaccine deployment strategies to rapidly increase population immunity. CONTENT: Phylogenetic analysis of SARS-CoV-2 isolates circulating in India suggests the emergence and spread of B.1.617 variant. The immunogenicity of currently approved vaccines indicates that the majority of vaccines elicit an antibody response and some level of protection. According to current data, vaccines in the pre-fusion configuration (2p substitution) have an advantage in terms of nAb titer, but the duration of vaccine-induced immunity, as well as the role of T cells and memory B cells in protection, remain unknown. Since vaccine efficacy on virus variants is one of the major factors to be considered for achieving herd immunity, existing vaccines need to be improved or effective next-generation vaccines should be developed to cover the new variants of the virus.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19/imunologia , COVID-19 , SARS-CoV-2 , COVID-19/imunologia , COVID-19/prevenção & controle , Evolução Molecular , Humanos , Índia , Filogenia , SARS-CoV-2/genética , Vacinação
18.
mBio ; 12(4): e0118821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281387

RESUMO

The currently ongoing COVID-19 pandemic caused by SARS-CoV-2 has accounted for millions of infections and deaths across the globe. Genome sequences of SARS-CoV-2 are being published daily in public databases and the availability of these genome data sets has allowed unprecedented access to the mutational patterns of SARS-CoV-2 evolution. We made use of the same genomic information for conducting phylogenetic analysis and identifying lineage-specific mutations. The catalogued lineage-defining mutations were analyzed for their stabilizing or destabilizing impact on viral proteins. We recorded persistence of D614G, S477N, A222V, and V1176F variants and a global expansion of the PANGOLIN variant B.1. In addition, a retention of Q57H (B.1.X), R203K/G204R (B.1.1.X), T85I (B.1.2-B.1.3), G15S+T428I (C.X), and I120F (D.X) variations was observed. Overall, we recorded a striking balance between stabilizing and destabilizing mutations, therefore leading to well-maintained protein structures. With selection pressures in the form of newly developed vaccines and therapeutics to mount in the coming months, the task of mapping viral mutations and recording their impact on key viral proteins should be crucial to preemptively catch any escape mechanism for which SARS-CoV-2 may evolve. IMPORTANCE Since its initial isolation in Wuhan, China, large numbers of SARS-CoV-2 genome sequences have been shared in publicly accessible repositories, thus enabling scientists to do detailed evolutionary analysis. We investigated the evolutionarily associated mutational diversity overlaid on the major phylogenetic lineages circulating globally, using 513 representative genomes. We detailed the phylogenetic persistence of key variants facilitating global expansion of the PANGOLIN variant B.1, including the recent, fast-expanding, B.1.1.7 lineage. The stabilizing or destabilizing impact of the catalogued lineage-defining mutations on viral proteins indicates their possible involvement in balancing the protein function and structure. A clear understanding of this mutational profile is of high clinical significance to catch any vaccine escape mechanism, as the same proteins make crucial components of vaccines that have recently been approved or are in development. In this vein, our study provides an imperative framework and baseline data upon which further analysis could be built as newer variants of SARS-CoV-2 continue to appear.


Assuntos
COVID-19/epidemiologia , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos/genética , COVID-19/transmissão , Evolução Molecular , Humanos , Mutação/genética , Filogenia , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma
19.
Genomics ; 113(4): 2171-2176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965548

RESUMO

BACKGROUND: Recent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination. METHODS: Five ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae. RESULTS: Comparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1). CONCLUSION: Considering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally.


Assuntos
Salmonella typhi , Febre Tifoide , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Enterobacteriaceae/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Salmonella typhi/genética
20.
Nat Commun ; 12(1): 1500, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686077

RESUMO

Diphtheria is a respiratory disease caused by the bacterium Corynebacterium diphtheriae. Although the development of a toxin-based vaccine in the 1930s has allowed a high level of control over the disease, cases have increased in recent years. Here, we describe the genomic variation of 502 C. diphtheriae isolates across 16 countries and territories over 122 years. We generate a core gene phylogeny and determine the presence of antimicrobial resistance genes and variation within the tox gene of 291 tox+ isolates. Numerous, highly diverse clusters of C. diphtheriae are observed across the phylogeny, each containing isolates from multiple countries, regions and time of isolation. The number of antimicrobial resistance genes, as well as the breadth of antibiotic resistance, is substantially greater in the last decade than ever before. We identified and analysed 18 tox gene variants, with mutations estimated to be of medium to high structural impact.


Assuntos
Corynebacterium diphtheriae/genética , Toxina Diftérica/genética , Difteria/microbiologia , Difteria/prevenção & controle , Anti-Infecciosos/farmacologia , Corynebacterium diphtheriae/efeitos dos fármacos , Toxoide Diftérico , Farmacorresistência Bacteriana/genética , Variação Genética , Genoma Bacteriano , Genômica , Humanos , Índia , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...