Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 160: 144-153, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29803189

RESUMO

One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.


Assuntos
Benzo(a)pireno/toxicidade , Carbono/toxicidade , Poluentes Ambientais/toxicidade , Fibroblastos/efeitos dos fármacos , Nanopartículas/toxicidade , Adsorção , Benzo(a)pireno/química , Carbono/química , Membrana Celular/metabolismo , Células Cultivadas , Poluentes Ambientais/química , Humanos , Nanopartículas/química , Proteômica , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...