Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
2.
Clin Transl Immunology ; 10(7): e1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257967

RESUMO

OBJECTIVES: Humoral and cellular immunity to SARS-CoV-2 following COVID-19 will likely contribute to protection from reinfection or severe disease. It is therefore important to characterise the initiation and persistence of adaptive immunity to SARS-CoV-2 amidst the ongoing pandemic. METHODS: Here, we conducted a longitudinal study on hospitalised moderate and severe COVID-19 patients from the acute phase of disease into convalescence at 5 and 9 months post-symptom onset. Utilising flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune responses during and after human SARS-CoV-2 infection. RESULTS: During acute COVID-19, we observed an increase in germinal centre activity, a substantial expansion of antibody-secreting cells and the generation of SARS-CoV-2-neutralising antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralising antibody titres as well as robust specific memory B cell responses and polyfunctional T cell responses at 5 and 9 months after symptom onset in both moderate and severe COVID-19 patients. CONCLUSION: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2-specific immunological memory in hospitalised COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

3.
Front Microbiol ; 8: 2370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259583

RESUMO

Granulomas are hallmarks of pulmonary tuberculosis (TB) and traditionally viewed as host-protective structures. However, recent evidence suggest that Mycobacterium tuberculosis (Mtb) uses its virulence factors to stimulate the formation of granuloma. In the present study, we investigated the contribution of matrix metalloproteinases (MMPs), host enzymes that cause degradation of the extracellular matrix, to granuloma formation and bacterial load in Mtb-infected tissue. To this end, we used our lung tissue model for TB, which is based on human lung-derived cells and primary human monocyte-derived macrophages. Global inhibition of MMPs in the Mtb-infected tissue model reduced both granuloma formation and bacterial load. The infection caused upregulation of a set of MMPs (MMP1, 3, 9, and 12), and this finding could be validated in lung biopsies from patients with non-cavitary TB. Data from this study indicate that MMP activation contributes to early TB granuloma formation, suggesting that host-directed, MMP-targeted intervention could be considered as adjunct therapy to TB treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...