Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38354902

RESUMO

The red-leg syndrome in amphibians is a condition commonly associated with the bacteria Aeromonas hydrophila and has led to population declines. However, there is little information concerning the inflammatory assemblage in infected anurans. We evaluated immune and endocrine alterations induced by stimulation with heat-killed A. hydrophila injected in Rhinella diptycha toads. Control animals were not manipulated, while the others were separated into groups that received intraperitoneal injection of 300 µl of saline or heat-killed bacteria: groups A1 (3 × 107 cells), A2 (3 × 108 cells), and A3 (3 × 109 cells). Animals were bled and euthanized six hours post-injection. We evaluated neutrophil: lymphocyte ratio (NLR), plasma bacterial killing ability (BKA), testosterone (T), melatonin (MEL), and corticosterone (CORT) plasma levels. Heat-killed A. hydrophila increased CORT and NLR, and decreased MEL, especially at higher concentrations. There was no effect of treatment on T and BKA. We then selected the saline and A3 groups to conduct mRNA expression of several genes including glucocorticoid receptor (GR), toll-like receptor-4 (TLR-4), interferon-γ (IFN-γ), interleukin (IL)-1ß, IL-6, and IL-10. We found higher expression of IL-6, IL-1ß, IL-10, and IFN-γ in group A3 compared to the saline group. These results indicate the beginning of an inflammatory assemblage, notably at the two highest concentrations of bacteria, and give a better understanding of how anurans respond to an infection within an integrated perspective, evaluating different physiological aspects. Future studies should investigate later phases of the immune response to elucidate more about the inflammation in amphibians challenged with A. hydrophila.


Assuntos
Doenças dos Peixes , Interleucina-10 , Animais , Aeromonas hydrophila , Temperatura Alta , Interleucina-6 , Bufonidae , Anuros , Doenças dos Peixes/genética
2.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990784

RESUMO

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , NF-kappa B/metabolismo , Glândula Pineal/metabolismo , Melatonina/farmacologia , Interleucina-10/metabolismo , Transdução de Sinais
3.
Artigo em Inglês | MEDLINE | ID: mdl-35931313

RESUMO

The inflammatory response comprises highly orchestrated events that are conserved amongst vertebrate groups. Hepatic and splenic cytokines are major mediators of the systemic inflammatory processes. However, the liver is still neglected as an immune organ in amphibians. This study reports organ-dependent gene expression using an anuran model. We tracked mRNA levels of immune proteins [C1s (subcomponent S of the complement protein 1), IFN-γ, IL-1ß, IL-6, and IL-10] at four time-points (1 h, 3 h, 6 h, and 18 h post-injection) in spleens and livers of intraperitoneal LPS-challenged (2 mg/kg) adult male toads (Rhinella diptycha) using independent samples. We found acute C1s up-regulation in the liver 1 h post-injection, with no treatment effect in the spleen. The LPS injection did not show any effect in splenic IFN-γ gene expression while eliciting only a marginal effect in the hepatic tissue. IL-1ß was up-regulated in both organs, with the liver initially displaying early expression (1 h and 3 h) and the spleen taking over late expression (18 h). Both organs exhibited similar patterns for IL-6, with early up-regulation (1 h and 3 h) and late peak (18 h). Although IL-10 was early detected and up-regulated only in the liver, both organs showed up-regulation in 6 h and 18 h post-injection. Our results show an exclusive hepatic prominence in complement protein expression during the acute-phase response. Furthermore, hepatic pro-inflammatory cytokine expression was more pronounced in earliest time-points, while the spleen offers a slower and more consistent response overall. Our data provide an organ-integrative outlook into the initial hours of the inflammation in amphibians, confirming the liver's pivotal role as a regulator in the acute-phase of the inflammatory response in amphibians.

4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142200

RESUMO

Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.


Assuntos
MicroRNAs , Microcefalia , Malformações do Sistema Nervoso , Infecção por Zika virus , Zika virus , Animais , Antivirais , Morte Celular/genética , Quimiotaxia , Feminino , Humanos , Imunidade , MicroRNAs/genética , Microcefalia/genética , Mosquitos Vetores , Gravidez , Zika virus/fisiologia
5.
Neuroscience ; 499: 12-22, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798261

RESUMO

The pineal gland is a key player in surveillance and defense responses. In healthy conditions, nocturnal circulating melatonin (MEL) impairs the rolling and adhesion of leukocytes to the endothelial layer. Fungi, bacteria, and pro-inflammatory cytokines block nocturnal pineal MEL synthesis, facilitating leukocyte migration to injured areas. ATP is a cotransmitter of the noradrenergic signal and potentiates noradrenaline (NAd)-induced MEL synthesis via P2Y1 receptor (P2Y1R) activation. Otherwise, ATP low-affinity P2X7 receptor (P2X7R) activation impairs N-acetylserotonin (NAS) into MEL conversion in NAd incubated pineals. Here we mimicked a focal increase of ATP by injecting low (0.3 and 1.0 µg) and high (3.0 µg) ATP in the right lateral ventricle of adult rats. Nocturnal pineal activity mimicked the in culture data. Low ATP doses increased MEL output, while high ATP dose and the P2X7R agonist BzATP (15.0-50.0 ng) increased NAS pineal and blood content. In the brain, the response was structure-dependent. There was an increase in cortical and no change in cerebellar MEL. These effects were mediated by changes in the expression of coding genes to synthetic and metabolizing melatonergic enzymes. Thus, the pineal gland plays a role as a first-line structure to respond to the death of cells inside the brain by turning NAS into the darkness hormone.


Assuntos
Melatonina , Glândula Pineal , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Melatonina/farmacologia , NAD/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Glândula Pineal/metabolismo , Ratos , Receptores Purinérgicos P2X7/metabolismo , Serotonina/análogos & derivados
6.
Integr Comp Biol ; 62(6): 1618-1628, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35362514

RESUMO

Inflammation comprises alterations in glucocorticoids (in amphibians, corticosterone-CORT) and melatonin (MEL) levels, two hormones with immunomodulatory effects on cytokine production in several vertebrates. Cytokines mediate inflammation progress differently depending on their function. While some are secreted during the acute phase of the immune response, others prevail during the resolution phase. Major efforts have been made to understand the interaction of endocrine mediators and cytokine production in endotherms, but little is known for ectotherms so far. Characterizing the stages of inflammation and their interplay with endocrine mediators is crucial for an assertive and integrative approach to amphibian physiology and ecoimmunology. Herein, we investigated CORT and MEL plasma levels as well as splenic cytokine (IL-1ß, IL-6, and IL-10) mRNA levels during the progression of the inflammatory response in toads (Rhinella diptycha) in four time-points (1, 3, 6, and 18 h) after an immune challenge with lipopolysaccharide (LPS) using independent samples. Toads were responsive to LPS, with all hormones and cytokines affected by LPS. IL-1ß and IL-6 were up-regulated after 1 h, but IL-1ß decreased right after 3 h, while IL-6 sustained up-regulation throughout all time-points. IL-10 had not been detected until 6 h post-LPS-stimulation, when it showed up-regulation, along with a CORT increase at the same time-point. After 18 h, CORT levels were still high, and IL-1ß was up-regulated again, along with up-regulated IL-6 and an IL-10 decrease. We also found positive correlations between IL-1ß with IL-6 for LPS and saline groups. LPS-treated individuals showed an overall decrease in MEL plasma levels compared to saline counterparts. Our results showcase the early endocrine and molecular events of the amphibian immune response. We also report activation of the hypothalamus-pituitary-interrenal (HPI) axis during inflammation and increasing evidence for an immune-pineal axis to be described in amphibians.


Assuntos
Citocinas , Lipopolissacarídeos , Animais , Citocinas/genética , Citocinas/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Interleucina-10/efeitos adversos , Interleucina-6/efeitos adversos , RNA Mensageiro/efeitos adversos , Corticosterona , Inflamação/induzido quimicamente
7.
Artigo em Inglês | MEDLINE | ID: mdl-35421537

RESUMO

Glucocorticoids and melatonin display immunomodulatory functions, with both immune-stimulatory and suppressor effects, depending on the context. While their immune properties are well-explored in mammals, there are still few studies on this immune-endocrine interaction in an inflammatory context in amphibians, all of them under captivity conditions, which can constitute a stressor for these animals. Evaluating how amphibians react to an immune challenge in the field would reveal relevant information regarding how immune-physiological parameters are modulated in natural conditions. This study aimed to investigate the effects of lipopolysaccharide (LPS) injection in male toads (Rhinella icterica) recently captured in their natural habitat in the Atlantic Forest at two different times of the day. We evaluated: splenic cytokines mRNA (interleukin [IL]-1ß, IL-6, IL-10, interferon-γ) and complement system protein (C1s), plasma bacterial killing ability (BKA), plasma corticosterone (CORT), melatonin (MEL), and testosterone (T) levels, and neutrophil to lymphocyte ratio (NLR), two hours post-injections. LPS-injection increased NLR, the gene expression of IL-1ß, and less evidently CORT levels independently of the time of the day. These results evidence LPS-induced inflammation, similarly observed in toads in captivity. Saline and LPS-injected toads showed a positive correlation between IL-1ß and IL-6, both cytokines with pro-inflammatory effects. Also, CORT was negatively associated with T, suggesting inhibition of the hypothalamus-pituitary-gonadal axis in the LPS-stimulated group. Our results are associated with the first stage of the inflammatory assemblage. Studies evaluating further steps of this process might lead to a better understanding of the immune-endocrine relations in amphibians.


Assuntos
Lipopolissacarídeos , Melatonina , Animais , Bufonidae/fisiologia , Corticosterona , Ecossistema , Interleucina-6 , Lipopolissacarídeos/toxicidade , Masculino , Mamíferos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35259499

RESUMO

The immune-endocrine interactions following an immune challenge have been demonstrated in amphibians. When considering immune challenges, the immune-endocrine implications can vary with the injection time (day or night), a pattern not explored in amphibians. We investigated the immune response following a lipopolysaccharide - LPS injection, measured as plasma bacterial killing ability - BKA, phagocytosis of blood cells - PP, and neutrophil to lymphocyte ratio - NLR, splenic proinflammatory cytokines mRNA (IL-1ß and IL-6), and also endocrine mediators (corticosterone - CORT and melatonin - MEL plasma levels) in Rhinella icterica adult male toads injected at day (10 am) or night (10 pm). LPS induced increases in CORT, NLR, PP, and IL-1ß mRNA compared with amphibian phosphate-buffer saline-injected individuals. For plasma CORT, the response was more pronounced during the night. While for the PP and IL-1ß mRNA, the effect was more evident during the day. For NLR, the increase happened at both times, day and night, in the LPS-injected toads. Meanwhile, no changes were observed in BKA, IL-6 mRNA, and MEL levels. Overall, our results demonstrated an LPS-induced inflammatory response in R. icterica toads, characterized by higher PP, NLR, and IL-1ß mRNA, followed by activation of the hypothalamic-pituitary-interrenal axis (higher CORT levels). The time in which the toads received the LPS injection affected the endocrine and immune mediators. The higher CORT and lower inflammatory response at night suggested a potential functional interaction between CORT and immune reactivity associated with the differences in night vs. day in R. icterica toads. These results highlight the relevance of investigating different injection times and mechanistic pathways to understand LPS-induced immunomodulation in anurans.


Assuntos
Interleucina-6 , Lipopolissacarídeos , Animais , Bufonidae , Corticosterona , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Masculino , RNA Mensageiro/genética
9.
Front Genet ; 13: 1051568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685903

RESUMO

It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.

10.
Fish Shellfish Immunol ; 110: 1-9, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33378698

RESUMO

The knowledge on echinoderm coelomocytes has increased in recent years, but researchers still face a complex problem: how to obtain purified cells. Even flow cytometry being useful to address coelomocytes in suspension, the need for a method able to provide isolated cells is still noteworthy. Here, we use Imaging Flow Cytometry (IFC) to characterize the coelomocytes of two sea urchin species - Arbacia lixula and Lytechinus variegatus - and obtain gates to isolate cell populations. Then, we used these gates to study the physiological response of A. lixula coelomocytes during an induced immune challenge with Escherichia coli. An analysis of area and aspect ratio parameters of the flow cytometer allowed the identification of two main cell populations in the coelomic fluid: circular and elongated cells. A combination of this method with nucleus labeling using propidium iodide allowed the determination of gates containing isolated subpopulations of vibratile cells, red spherulocytes, and two phagocytes subpopulations in both species. We observed that during an induced bacterial immune challenge, A. lixula was able to modulate coelomocyte frequencies, increasing the phagocytes and decreasing red spherulocytes and vibratile cells. These results indicate that vibratile cells and red spherulocytes act by immobilizing and stoping bacterial growth, respectively, cooperating with phagocytes in the immune response. The use of IFC was fundamental not only to identify specific gates for the main coelomic subpopulations but also allowed the investigation on how echinoids modulate their physiological responses during immune challenges. Furthermore, we provide the first experimental evidence about the role of vibratile cells, corroborating its involvement with the immune system.


Assuntos
Arbacia/fisiologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Lytechinus/fisiologia , Animais , Separação Celular/instrumentação , Citometria de Fluxo/instrumentação
11.
Sci Rep ; 10(1): 4799, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179854

RESUMO

Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.


Assuntos
Células da Medula Óssea/imunologia , Ritmo Circadiano/fisiologia , Interleucina-10/farmacologia , Lipopolissacarídeos/farmacologia , Melatonina/biossíntese , Baço/citologia , Baço/imunologia , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Masculino , Fagócitos/imunologia , Fagócitos/metabolismo , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Noncoding RNA ; 5(1)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781588

RESUMO

The identification of RNAs that are not translated into proteins was an important breakthrough, defining the diversity of molecules involved in eukaryotic regulation of gene expression. These non-coding RNAs can be divided into two main classes according to their length: short non-coding RNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). The lncRNAs in association with other molecules can coordinate several physiological processes and their dysfunction may impact in several pathologies, including cancer and infectious diseases. They can control the flux of genetic information, such as chromosome structure modulation, transcription, splicing, messenger RNA (mRNA) stability, mRNA availability, and post-translational modifications. Long non-coding RNAs present interaction domains for DNA, mRNAs, miRNAs, and proteins, depending on both sequence and secondary structure. The advent of new generation sequencing has provided evidences of putative lncRNAs existence; however, the analysis of transcriptomes for their functional characterization remains a challenge. Here, we review some important aspects of lncRNA biology, focusing on their role as regulatory elements in gene expression modulation during physiological and disease processes, with implications in host and pathogens physiology, and their role in immune response modulation.

13.
Neuroendocrinology ; 104(2): 126-134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26954684

RESUMO

BACKGROUND/AIM: The nocturnal production of melatonin by the pineal gland is triggered by sympathetic activation of adrenoceptors and may be modulated by immunological signals. The effect of glucocorticoids on nocturnal melatonin synthesis is controversial; both stimulatory and inhibitory effects have been reported. During pathophysiological processes, an increased sympathetic tonus could result in different patterns of adrenoceptor activation in the pineal gland. Therefore, in this investigation, we evaluated whether the pattern of adrenergic stimulation of the pineal gland drives the direction of the glucocorticoid effect on melatonin production. METHODS: The corticosterone effect on the pineal hormonal production induced by ß-adrenoceptor or ß+α1-adrenoceptor activation was evaluated in cultured glands. We also investigated whether the in vivo lipopolysaccharide (LPS)-induced inhibition of melatonin is dependent on the interaction of glucocorticoids and the α1-adrenoceptor in adrenalectomized animals and on the in vivo blockade of glucocorticoid receptors (GRs) or the α1-adrenoceptor. RESULTS: Corticosterone potentiated ß-adrenoceptor-induced pineal melatonin synthesis, whilst corticosterone-dependent inhibition was observed when melatonin production was induced by ß+α1-adrenoceptors agonists. The inhibitory effect of corticosterone is mediated by GR, as it was abolished in the presence of a GR antagonist. Moreover, LPS-induced reduction in melatonin nocturnal plasma content was reversed by adrenalectomy and by antagonizing GR or α1-adrenoceptors. CONCLUSIONS: The dual effect of corticosterone on pineal melatonin synthesis is determined by the activation pattern of adrenoceptors (ß or ß+α1) in the gland during GR activation, suggesting that increased activation of the sympathetic system and the hypothalamic-pituitary-adrenal axis are necessary for the control of melatonin production during defense responses.


Assuntos
Catecolaminas/metabolismo , Corticosterona/administração & dosagem , Melatonina/biossíntese , Glândula Pineal/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Inflamação/metabolismo , Isoproterenol/administração & dosagem , Lipopolissacarídeos , Masculino , Glândula Pineal/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Front Microbiol ; 8: 2682, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379478

RESUMO

Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg - ). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.

15.
J Pineal Res ; 60(1): 84-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26510398

RESUMO

Gliomas, the most common primary brain tumors in adults, are classified into four malignancy grades according to morphological features. Recent studies have shown that melatonin treatment induces cytotoxicity in glioma-initiating cells and reduces the invasion and migration of glioma cell lines, inhibiting the nuclear factor κB (NFκB) oncopathway. Given that C6 rat glioma cells produce melatonin, we investigated the correlation between the capacity of gliomas to synthesize/metabolize melatonin and their overall malignancy. We first characterized the melatonergic system of human gliomas cell lines with different grades of aggressiveness (HOG, T98G, and U87MG) and demonstrated that glioma-synthesized melatonin exerts an autocrine antiproliferative effect. Accordingly, the sensitivity to exogenous melatonin was higher for the most aggressive cell line, U87MG, which synthesized/accumulated less melatonin. Using The Cancer Genome Atlas RNAseq data of 351 glioma patients, we designed a predictive model of the content of melatonin in the tumor microenvironment, the ASMT:CYP1B1 index, combining the gene expression levels of melatonin synthesis and metabolism enzymes. The ASMT:CYP1B1 index negatively correlated with tumor grade, as well as with the expression of pro-proliferation and anti-apoptotic NFκB target genes. More importantly, the index was a grade- and histological type-independent prognostic factor. Even when considering only high-grade glioma patients, a low ASMT:CYP1B1 value, which suggests decreased melatonin and enhanced aggressiveness, was strongly associated with poor survival. Overall, our data reveal the prognostic value of the melatonergic system of gliomas and provide insights into the therapeutic role of melatonin.


Assuntos
Acetilserotonina O-Metiltransferasa , Neoplasias Encefálicas , Citocromo P-450 CYP1B1 , Genes Neoplásicos , Glioma , Melatonina , Proteínas de Neoplasias , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Glioma/mortalidade , Humanos , Melatonina/biossíntese , Melatonina/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prognóstico , Ratos
16.
J Pineal Res ; 59(4): 478-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26383232

RESUMO

Acute inflammatory responses induced by bacteria or fungi block nocturnal melatonin synthesis by rodent pineal glands. Here, we show Leishmania infection does not impair daily melatonin rhythm in hamsters. Remarkably, the attenuated parasite burden and lesion progression in hamsters infected at nighttime was impaired by blockage of melatonin receptors with luzindole, whereas melatonin treatment during the light phase attenuated Leishmania infection. In vitro studies corroborated in vivo observations. Melatonin treatment reduced macrophage expression of Cat-2b, Cat1, and ArgI, genes involved in arginine uptake and polyamine synthesis. Indeed, melatonin reduced macrophage arginine uptake by 40%. Putrescine supplementation reverted the attenuation of infectivity by melatonin indicating that its effect was due to the arrest of parasite replication. This study shows that the Leishmania/host interaction varies in a circadian manner according to nocturnal melatonin pineal synthesis. Our results provide new data regarding Leishmania infectiveness and show new approaches for applying agonists of melatonin receptors in Leishmaniasis therapy.


Assuntos
Leishmania/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melatonina/farmacologia , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Arginase/metabolismo , Arginina/metabolismo , Leishmania/patogenicidade , Óxido Nítrico Sintase/metabolismo , Poliaminas/metabolismo
17.
PLoS One ; 7(3): e34022, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479507

RESUMO

In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg(-) L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg(-) mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration.


Assuntos
Arginase/química , Regulação da Expressão Gênica , Leishmania/enzimologia , Leishmania/patogenicidade , Leishmaniose/parasitologia , Macrófagos/parasitologia , Microcorpos/enzimologia , Animais , Arginina/metabolismo , Linhagem Celular , Citosol/metabolismo , Leishmaniose/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microcorpos/metabolismo , Mutação , Fases de Leitura Aberta
18.
PLoS One ; 7(1): e29894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272258

RESUMO

Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T(reg)) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T(reg) cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4(+) T cell activation and IFN-γ production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-α and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T(reg) cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.


Assuntos
Anticorpos Monoclonais/imunologia , Interleucina-2/imunologia , Malária/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Imunofenotipagem , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/imunologia , Subunidade beta de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/tratamento farmacológico , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/imunologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo
19.
PLoS One ; 6(11): e27818, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114701

RESUMO

Leishmania (L.) amazonensis uses arginine to synthesize polyamines to support its growth and survival. Here we describe the presence of two gene copies, arranged in tandem, that code for the arginine transporter. Both copies show similar Open Reading Frames (ORFs), which are 93% similar to the L. (L.) donovani AAP3 gene, but their 5' and 3' UTR's have distinct regions. According to quantitative RT-PCR, the 5.1 AAP3 mRNA amount was increased more than 3 times that of the 4.7 AAP3 mRNA along the promastigote growth curve. Nutrient deprivation for 4 hours and then supplemented or not with arginine (400 µM) resulted in similar 4.7 AAP3 mRNA copy-numbers compared to the starved and control parasites. Conversely, the 5.1 AAP3 mRNA copy-numbers increased in the starved parasites but not in ones supplemented with arginine (p<0.05). These results correlate with increases in amino acid uptake. Both Meta1 and arginase mRNAs remained constant with or without supplementation. The same starvation experiment was performed using a L. (L.) amazonensis null knockout for arginase (arg(-)) and two other mutants containing the arginase ORF with (arg(-)/ARG) or without the glycosomal addressing signal (arg(-)/argΔSKL). The arg(-) and the arg(-)/argΔSKL mutants did not show the same behavior as the wild-type (WT) parasite or the arg(-)/ARG mutant. This can be an indicative that the internal pool of arginine is also important for controlling transporter expression and function. By inhibiting mRNA transcription or/and mRNA maturation, we showed that the 5.1 AAP3 mRNA did not decay after 180 min, but the 4.7 AAP3 mRNA presented a half-life decay of 32.6 +/- 5.0 min. In conclusion, parasites can regulate amino acid uptake by increasing the amount of transporter-coding mRNA, possibly by regulating the mRNA half-life in an environment where the amino acid is not present or is in low amounts.


Assuntos
Arginase/genética , Arginase/metabolismo , Arginina/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , RNA Mensageiro/genética , Transporte Biológico , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Artigo em Inglês | MEDLINE | ID: mdl-22654792

RESUMO

The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...