Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732082

RESUMO

Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.


Assuntos
Sistema Nervoso Central , Homeostase , Imunidade Inata , Humanos , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microglia/imunologia , Microglia/metabolismo
2.
Comput Struct Biotechnol J ; 23: 1088-1093, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38487369

RESUMO

The stabilization of the retromer protein complex can be effective in the treatment of different neurological disorders. Following the identification of bis-1,3-phenyl guanylhydrazone 2a as an effective new compound for the treatment of amyotrophic lateral sclerosis, in this work we analyze the possible binding sites of this molecule to the VPS35/VPS29 dimer of the retromer complex. Our results show that the affinity for different sites of the protein assembly depends on compound charge and therefore slight changes in the cell microenvironment could promote different binding states. Finally, we describe a novel binding site located in a deep cleft between VPS29 and VPS35 that should be further explored to select novel molecular chaperones for the stabilization of the retromer complex.

3.
Handb Clin Neurol ; 196: 523-537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37620088

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.


Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Doenças Neurodegenerativas , Animais , Humanos , Doença dos Neurônios Motores/terapia , Esclerose Lateral Amiotrófica/terapia , Neurônios Motores , Cognição
4.
Sci Transl Med ; 15(698): eade3856, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256935

RESUMO

Dysregulation of the interleukin-1 (IL-1) pathway leads to immune diseases that can result in chronic tissue and organ inflammation. Although IL-1 blockade has shown promise in ameliorating these symptoms and improving patients' quality of life, there is an urgent need for more effective, long-lasting treatments. We developed a lentivirus (LV)-mediated gene transfer strategy using transplanted autologous hematopoietic stem/progenitor cells (HSPCs) as a source of IL-1 receptor antagonist (IL-1RA) for systemic delivery to tissues and organs. Transplantation of mouse and human HSPCs transduced with an IL-1RA-encoding LV ensured stable IL-1RA production while maintaining the clonogenic and differentiation capacities of HSPCs in vivo. We examined the efficacy of cell-mediated IL-1RA delivery in three models of IL-1-dependent inflammation, for which treatment hindered neutrophil recruitment in an inducible model of gout, prevented systemic and multi-tissue inflammation in a genetic model of cryopyrin-associated periodic syndromes, and reduced disease severity in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Our findings demonstrate HSPC-mediated IL-1RA delivery as a potential therapeutic modality that can be exploited to suppress tissue and organ inflammation in diverse immune-related diseases involving IL-1-driven inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Proteína Antagonista do Receptor de Interleucina 1 , Animais , Humanos , Encefalomielite Autoimune Experimental/terapia , Inflamação/terapia , Interleucina-1 , Lentivirus , Qualidade de Vida , Camundongos
5.
Pharmaceutics ; 14(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365220

RESUMO

Dual functionalized liposomes were developed to cross the blood−brain barrier (BBB) and to release their cargo in a pathological matrix metalloproteinase (MMP)-rich microenvironment. Liposomes were surface-functionalized with a modified peptide deriving from the receptor-binding domain of apolipoprotein E (mApoE), known to promote cargo delivery to the brain across the BBB in vitro and in vivo; and with an MMP-sensitive moiety for an MMP-triggered drug release. Different MMP-sensitive peptides were functionalized at both ends with hydrophobic stearate tails to yield MMP-sensitive lipopeptides (MSLPs), which were assembled into mApoE liposomes. The resulting bi-functional liposomes (i) displayed a < 180 nm diameter with a negative ζ-potential; (ii) were able to cross an in vitro BBB model with an endothelial permeability of 3 ± 1 × 10−5 cm/min; (iii) when exposed to functional MMP2 or 9, efficiently released an encapsulated fluorescein dye; (iv) showed high biocompatibility when tested in neuronal cultures; and (v) when loaded with glibenclamide, a drug candidate with poor aqueous solubility, reduced the release of proinflammatory cytokines from activated microglial cells.

6.
Front Neurosci ; 15: 742065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630027

RESUMO

Microglia are the resident macrophages of the central nervous system (CNS) acting as the first line of defense in the brain by phagocytosing harmful pathogens and cellular debris. Microglia emerge from early erythromyeloid progenitors of the yolk sac and enter the developing brain before the establishment of a fully mature blood-brain barrier. In physiological conditions, during brain development, microglia contribute to CNS homeostasis by supporting cell proliferation of neural precursors. In post-natal life, such cells contribute to preserving the integrity of neuronal circuits by sculpting synapses. After a CNS injury, microglia change their morphology and down-regulate those genes supporting homeostatic functions. However, it is still unclear whether such changes are accompanied by molecular and functional modifications that might contribute to the pathological process. While comprehensive transcriptome analyses at the single-cell level have identified specific gene perturbations occurring in the "pathological" microglia, still the precise protective/detrimental role of microglia in neurological disorders is far from being fully elucidated. In this review, the results so far obtained regarding the role of microglia in neurodegenerative disorders will be discussed. There is solid and sound evidence suggesting that regulating microglia functions during disease pathology might represent a strategy to develop future therapies aimed at counteracting brain degeneration in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.

7.
J Med Chem ; 64(12): 8333-8353, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34097384

RESUMO

Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Guanidinas/uso terapêutico , Hidrazonas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/síntese química , Bloqueadores do Canal Iônico Sensível a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Animais , Sítios de Ligação , Células CHO , Galinhas , Cricetulus , Desenho de Fármacos , Guanidinas/síntese química , Guanidinas/metabolismo , Células HEK293 , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Ligação Proteica , Ratos , Relação Estrutura-Atividade
8.
Nat Commun ; 11(1): 3848, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737286

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper and lower motor neurons (MNs). We find a significant reduction of the retromer complex subunit VPS35 in iPSCs-derived MNs from ALS patients, in MNs from ALS post mortem explants and in MNs from SOD1G93A mice. Being the retromer involved in trafficking of hydrolases, a pathological hallmark in ALS, we design, synthesize and characterize an array of retromer stabilizers based on bis-guanylhydrazones connected by a 1,3-phenyl ring linker. We select compound 2a as a potent and bioavailable interactor of VPS35-VPS29. Indeed, while increasing retromer stability in ALS mice, compound 2a attenuates locomotion impairment and increases MNs survival. Moreover, compound 2a increases VPS35 in iPSCs-derived MNs and shows brain bioavailability. Our results clearly suggest the retromer as a valuable druggable target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Hidrazonas/farmacologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas de Transporte Vesicular/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hidrazonas/síntese química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
J Neurosci ; 40(4): 784-795, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31818979

RESUMO

Differently from other myeloid cells, microglia derive exclusively from precursors originating within the yolk sac and migrate to the CNS under development, without any contribution from fetal liver or postnatal hematopoiesis. Consistent with their unique ontology, microglia may express specific physiological markers, which have been partly described in recent years. Here we wondered whether profiles distinguishing microglia from peripheral macrophages vary with age and under pathology. To this goal, we profiled transcriptomes of microglia throughout the lifespan and included a parallel comparison with peripheral macrophages under physiological and neuroinflammatory settings using age- and sex-matched wild-type and bone marrow chimera mouse models. This comprehensive approach demonstrated that the phenotypic differentiation between microglia and peripheral macrophages is age-dependent and that peripheral macrophages do express some of the most commonly described microglia-specific markers early during development, such as Fcrls, P2ry12, Tmem119, and Trem2. Further, during chronic neuroinflammation CNS-infiltrating macrophages and not peripheral myeloid cells acquire microglial markers, indicating that the CNS niche may instruct peripheral myeloid cells to gain the phenotype and, presumably, the function of the microglia cell. In conclusion, our data provide further evidence about the plasticity of the myeloid cell and suggest caution in the strict definition and application of microglia-specific markers.SIGNIFICANCE STATEMENT Understanding the respective role of microglia and infiltrating monocytes in neuroinflammatory conditions has recently seemed possible by the identification of a specific microglia signature. Here instead we provide evidence that peripheral macrophages may express some of the most commonly described microglia markers at some developmental stages or pathological conditions, in particular during chronic neuroinflammation. Further, our data support the hypothesis about phenotypic plasticity and convergence among distinct myeloid cells so that they may act as a functional unit rather than as different entities, boosting their mutual functions in different phases of disease. This holds relevant implications in the view of the growing use of myeloid cell therapies to treat brain disease in humans.


Assuntos
Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Transcriptoma , Animais , Encéfalo/citologia , Plasticidade Celular/fisiologia , Inflamação/metabolismo , Macrófagos/citologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microglia/citologia , Fenótipo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
10.
J Nanobiotechnology ; 17(1): 49, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943991

RESUMO

BACKGROUND: The increasing use of gold nanoparticles (AuNPs) in the field of neuroscience instilled hope for their rapid translation to the clinical practice. AuNPs can be engineered to carry therapeutics or diagnostics in the diseased brain, possibly providing greater cell specificity and low toxicity. Although there is a general enthusiasm for these tools, we are in early stages of their development. Overall, their brain penetrance, stability and cell specificity are critical issues that must be addressed to drive AuNPs to the clinic. RESULTS: We studied the kinetic, distribution and stability of PEG-coated AuNPs in mice receiving a single injection into the cisterna magna of the 4th ventricle. AuNPs were conjugated with the fluorescent tag Cy5.5 (Cy5.5-AuNPs) to track their in vivo distribution. Fluorescence levels from such particles were detected in mice for weeks. In situ analysis of brains by immunofluorescence and electron microscopy revealed that Cy5.5-AuNPs penetrated the brain parenchyma, spreading in the CNS parenchyma beneath the 4th ventricle. Cy5.5-AuNPs were preferentially found in neurons, although a subset of resting microglia also entrapped these particles. CONCLUSIONS: Our results suggest that the ICM route for delivering gold particles allows the targeting of neurons. This approach might be pursued to carry therapeutics or diagnostics inside a diseased brain with a surgical procedure that is largely used in gene therapy approaches. Furthermore, this approach could be used for radiotherapy, enhancing the agent's efficacy to kill brain cancer cells.


Assuntos
Encéfalo/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Carbocianinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisterna Magna , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Permeabilidade , Distribuição Tecidual
11.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688344

RESUMO

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Assuntos
Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Proteínas do Olho/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Feto Abortado/embriologia , Feto Abortado/metabolismo , Células Ependimogliais/metabolismo , Idade Gestacional , Humanos , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Especificidade da Espécie
12.
Mol Ther ; 26(9): 2107-2118, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30017878

RESUMO

Extracellular vesicles (EVs) play a major role in cell-to-cell communication in physiological and pathological conditions, and their manipulation may represent a promising therapeutic strategy. Microglia, the parenchymal mononuclear phagocytes of the brain, modulate neighboring cells also through the release of EVs. The production of custom EVs filled with desired molecules, possibly targeted to make their uptake cell specific, and their administration in biological fluids may represent a valid approach for drug delivery. We engineered a murine microglia cell line, BV-2, to release EVs overexpressing the endogenous "eat me" signal Lactadherin (Mfg-e8) on the surface to target phagocytes and containing the anti-inflammatory cytokine IL-4. A single injection of 107 IL-4+Mfg-e8+ EVs into the cisterna magna modulated established neuroinflammation and significantly reduced clinical signs in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Injected IL-4+Mfg-e8+ EVs target mainly phagocytes (i.e., macrophages and microglia) surrounding liquoral spaces, and their cargo promote the upregulation of anti-inflammatory markers chitinase 3-like 3 (ym1) and arginase-1 (arg1), significantly reducing tissue damage. Engineered EVs may represent a biological drug delivery tool able to deliver multiple functional molecules simultaneously to treat neuroinflammatory diseases.


Assuntos
Vesículas Extracelulares/metabolismo , Interleucina-4/metabolismo , Esclerose Múltipla/metabolismo , Animais , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Neuroinflammation ; 15(1): 58, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475438

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating condition mainly deriving from a traumatic damage of the spinal cord (SC). Immune cells and endogenous SC-neural stem cells (SC-NSCs) play a critical role in wound healing processes, although both are ineffective to completely restore tissue functioning. The role of SC-NSCs in SCI and, in particular, whether such cells can interplay with the immune response are poorly investigated issues, although mechanisms governing such interactions might open new avenues to develop novel therapeutic approaches. METHODS: We used two transgenic mouse lines to trace as well as to kill SC-NSCs in mice receiving SCI. We used Nestin CreERT2 mice to trace SC-NSCs descendants in the spinal cord of mice subjected to SCI. While mice carrying the suicide gene thymidine kinase (TK) along with the GFP reporter, under the control of the Nestin promoter regions (NestinTK mice) were used to label and selectively kill SC-NSCs. RESULTS: We found that SC-NSCs are capable to self-activate after SCI. In addition, a significant worsening of clinical and pathological features of SCI was observed in the NestinTK mice, upon selective ablation of SC-NSCs before the injury induction. Finally, mice lacking in SC-NSCs and receiving SCI displayed reduced levels of different neurotrophic factors in the SC and significantly higher number of M1-like myeloid cells. CONCLUSION: Our data show that SC-NSCs undergo cell proliferation in response to traumatic spinal cord injury. Mice lacking SC-NSCs display overt microglia activation and exaggerate expression of pro-inflammatory cytokines. The absence of SC-NSCs impaired functional recovery as well as neuronal and oligodendrocyte cell survival. Collectively our data indicate that SC-NSCs can interact with microglia/macrophages modulating their activation/responses and that such interaction is importantly involved in mechanisms leading tissue recovery.


Assuntos
Modelos Animais de Doenças , Locomoção/fisiologia , Células-Tronco Neurais/patologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Proliferação de Células/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
14.
Cell Death Dis ; 9(2): 250, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445154

RESUMO

Microglia activation is a commonly pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a devastating disorder characterized by a selective motor neurons degeneration. Whether such activation might represent a causal event rather than a secondary epiphenomenon remains elusive. Here, we show that CNS-delivery of IL-4-via a lentiviral-mediated gene therapy strategy-skews microglia to proliferate, inducing these cells to adopt the phenotype of slowly proliferating cells. Transcriptome analysis revealed that IL-4-treated microglia express a broad number of genes normally encoded by embryonic microglia. Since embryonic microglia sustain CNS development, we then hypothesized that turning adult microglia to acquire such phenotype via IL-4 might be an efficient in vivo strategy to sustain motor neuron survival in ALS. IL-4 gene therapy in SOD1G93A mice resulted in a general amelioration of clinical outcomes during the early slowly progressive phase of the disease. However, such approach did not revert neurodegenerative processes occurring in the late and fast progressing phase of the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Transplante de Medula Óssea , Terapia Genética/métodos , Interleucina-4/genética , Microglia/metabolismo , Proteínas do Tecido Nervoso/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/genética , Interleucina-4/administração & dosagem , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Cultura Primária de Células , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Transcriptoma , Transplante Homólogo
15.
Brain Behav Immun ; 68: 197-210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29066310

RESUMO

The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro-inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Sinapsinas/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Hipocampo/metabolismo , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fosforilação , Sinapses/metabolismo , Sinapsinas/genética , Vesículas Sinápticas/metabolismo
16.
Sci Rep ; 7(1): 16547, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185463

RESUMO

IL-27 and IL-35 are heterodimeric cytokines, members of the IL-12 family and considered to have immunomodulatory properties. Their role during neuroinflammation had been investigated using mutant mice devoid of either one of their subunits or lacking components of their receptors, yielding conflicting results. We sought to understand the therapeutic potential of IL-27 and IL-35 delivered by gene therapy in neuroinflammation. We constructed lentiviral vectors expressing IL-27 and IL-35 from a single polypeptide chain, and we validated in vitro their biological activity. We injected IL-27 and IL-35-expressing lentiviral vectors into the cerebrospinal fluid (CSF) of mice affected by experimental neuroinflammation (EAE), and performed clinical, neuropathological and immunological analyses. Both cytokines interfere with neuroinflammation, but only IL-27 significantly modulates disease development, both clinically and neuropathologically. IL-27 protects from autoimmune inflammation by inhibiting granulocyte macrophages colony-stimulating factor (GM-CSF) expression in CD4+ T cells and by inducing program death-ligand 1 (PD-L1) expression in both CNS-resident and CNS-infiltrating myeloid cells. We demonstrate here that IL-27 holds therapeutic potential during neuroinflammation and that IL-27 inhibits GM-CSF and induces pd-l1 mRNA in vivo.


Assuntos
Sistema Nervoso Central/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/metabolismo , Interleucina-27/metabolismo , Interleucinas/metabolismo , Leucócitos/metabolismo , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Líquido Cefalorraquidiano/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Terapia Genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
17.
J Neurosci ; 36(41): 10529-10544, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733606

RESUMO

Ischemic stroke is the leading cause of disability, but effective therapies are currently widely lacking. Recovery from stroke is very much dependent on the possibility to develop treatments able to both halt the neurodegenerative process as well as to foster adaptive tissue plasticity. Here we show that ischemic mice treated with neural precursor cell (NPC) transplantation had on neurophysiological analysis, early after treatment, reduced presynaptic release of glutamate within the ipsilesional corticospinal tract (CST), and an enhanced NMDA-mediated excitatory transmission in the contralesional CST. Concurrently, NPC-treated mice displayed a reduced CST degeneration, increased axonal rewiring, and augmented dendritic arborization, resulting in long-term functional amelioration persisting up to 60 d after ischemia. The enhanced functional and structural plasticity relied on the capacity of transplanted NPCs to localize in the peri-ischemic and ischemic area, to promote the upregulation of the glial glutamate transporter 1 (GLT-1) on astrocytes and to reduce peri-ischemic extracellular glutamate. The upregulation of GLT-1 induced by transplanted NPCs was found to rely on the secretion of VEGF by NPCs. Blocking VEGF during the first week after stroke reduced GLT-1 upregulation as well as long-term behavioral recovery in NPC-treated mice. Our results show that NPC transplantation, by modulating the excitatory-inhibitory balance and stroke microenvironment, is a promising therapy to ameliorate disability, to promote tissue recovery and plasticity processes after stroke. SIGNIFICANCE STATEMENT: Tissue damage and loss of function occurring after stroke can be constrained by fostering plasticity processes of the brain. Over the past years, stem cell transplantation for repair of the CNS has received increasing interest, although underlying mechanism remain elusive. We here show that neural stem/precursor cell transplantation after ischemic stroke is able to foster axonal rewiring and dendritic plasticity and to induce long-term functional recovery. The observed therapeutic effect of neural precursor cells seems to underlie their capacity to upregulate the glial glutamate transporter on astrocytes through the vascular endothelial growth factor inducing favorable changes in the electrical and molecular stroke microenvironment. Cell-based approaches able to influence plasticity seem particularly suited to favor poststroke recovery.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia , Animais , Comportamento Animal , Isquemia Encefálica/metabolismo , Infarto Cerebral/patologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Técnicas de Patch-Clamp , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/psicologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Neuroinflammation ; 13(1): 139, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266518

RESUMO

BACKGROUND: Myeloid cells, such as macrophages and microglia, play a crucial role in neuroinflammation and have been recently identified as a novel therapeutic target, especially for chronic forms. The general aim would be to change the phenotype of myeloid cells from pro- to anti-inflammatory, favoring their tissue-trophic and regenerative functions. Myeloid cells, however, display a number of functional phenotypes, not immediately identifiable as pro- or anti-inflammatory, and associated to ambiguous markers. METHODS: We employed in vitro assays to study macrophage polarization/differentiation in the presence of classical polarizing stimuli such as IFNγ (pro-inflammatory) and IL4 (anti-inflammatory). We induced neuroinflammation in mice by immunization with a myelin antigen and treated diseased mice with intracisternal delivery of an IL4-expressing lentiviral vector. We analyzed clinical, pathological, and immunological outcomes with a focus on myeloid cells. RESULTS: We found that IL6, usually considered a pro-inflammatory cytokine, was released in vitro by macrophages treated with the anti-inflammatory cytokine IL4. We show the existence of macrophages expressing IL6 along with classical anti-inflammatory markers such as CD206 and demonstrate that these cells are immunosuppressive in vitro. In neuroinflamed mice, we show that IL4 delivery in the central nervous system (CNS) is associated with clinical and pathological protection from disease, associated with increased IL6 expression in infiltrating macrophages. CONCLUSIONS: IL6 is known to mediate both pro- and anti-inflammatory effects, having two distinct ways to induce cell-signaling: either through the membrane bound receptor (anti-inflammatory) or through trans-signaling (pro-inflammatory). We show here that IL6-expressing macrophages are associated to protection from neuroinflammation, suggesting that IL6 anti-inflammatory properties prevail in the CNS, and calling for a general reconsideration of IL6 in macrophage polarization.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-4/farmacologia , Interleucina-6/biossíntese , Macrófagos/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Interleucina-4/imunologia , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Behav Brain Res ; 311: 392-402, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27265783

RESUMO

The search for biomarkers of antidepressant effects focused on pathways regulating synaptic plasticity, and on activated inflammatory markers. Repeated Sleep Deprivation (SD) provides a model treatment to reverse-translate antidepressant effects from in vivo clinical psychiatry to model organisms. We studied the effects of repeated SD alone (ASD) or combined with exercise on a slow spinning wheel (SSW), in 116 C57BL/6J male mice divided in three groups (ASD, SSW, untreated). Forced Swimming Test (FST) was used to detect antidepressant-like effects. Unbiased evaluation of the transcriptional responses were obtained in the hippocampus by Illumina Bead Chip Array system, then confirmed with real time PCR. Spine densities in granular neurons of the dentate gyrus (DG) were assayed by standard Golgi staining. Activation of Microglial/Macrophages cells was evaluated by immunufluorescence analysis for Iba1. Rates of cell proliferation was estimated pulsing mice with the S-phase tracer 5-Iodo-2'-deoxyuridine (IdU). All SD procedures caused a decreasing of floating time at FST, and increased expression of the immediate early gene Arc/Arg3.1. In addition, SSW also increased expression of the Microglia/Macrophages genes Iba-1 and chemokine receptors Cx3cR1 and CxcR4, of the canonical Wnt signaling gene Wnt7a, and of dendritic spines in CA4 neurons of the DG. SSW up-regulated both the number of Iba1+ cells and rates of cell proliferation in the subgranular region of the DG. The antidepressant-like effects of SD dissociated both, from hippocampal neuroplasticity in the DG (not occurring after ASD), and from microglial activation (not preventing behavioral response when occurring). The increase in dendritic spine density in the DG after SD and exercise was associated with an up-regulation of Wnt 7a, and with activation of the innate immune system of the brain. Increased Arc/Arg3.1 suggests however increased neuroplasticity, which could be common to all fast-acting antidepressants, and possibly occurring in other brain areas.


Assuntos
Transtorno Depressivo/terapia , Terapia por Exercício , Hipocampo/fisiopatologia , Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Privação do Sono/fisiopatologia , Animais , Proliferação de Células/fisiologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Hipocampo/patologia , Macrófagos/patologia , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Corrida/fisiologia , Corrida/psicologia , Privação do Sono/psicologia , Transcriptoma , Proteínas Wnt/metabolismo
20.
J Physiol ; 594(13): 3827-40, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27098371

RESUMO

KEY POINTS: Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A) ). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Interneurônios/fisiologia , Medula Espinal/fisiologia , Superóxido Dismutase-1/genética , Ácido gama-Aminobutírico/fisiologia , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Camundongos Transgênicos , Receptores de Glicina/fisiologia , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...