Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(7): e0177222, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310260

RESUMO

Adeno-associated virus (AAV) is a nonenveloped single-stranded DNA (ssDNA) icosahedral T=1 virus being developed as a vector for clinical gene delivery systems. Currently, there are approximately 160 AAV clinical trials, with AAV2 being the most widely studied serotype. To further understand the AAV gene delivery system, this study investigates the role of viral protein (VP) symmetry interactions on capsid assembly, genome packaging, stability, and infectivity. A total of 25 (seven 2-fold, nine 3-fold, and nine 5-fold symmetry interface) AAV2 VP variants were studied. Six 2-fold and two 5-fold variants did not assemble capsids based on native immunoblots and anti-AAV2 enzyme-linked immunosorbent assays (ELISAs). Seven of the 3-fold and seven of the 5-fold variants that assembled capsids were less stable, while the only 2-fold variant that assembled had ~2°C higher thermal stability (Tm) than recombinant wild-type AAV2 (wtAAV2). Three of the 3-fold variants (AAV2-R432A, AAV2-L510A, and N511R) had an approximately 3-log defect in genome packaging. Consistent with previous reports of the 5-fold axes, the region of the capsid is important for VP1u externalization and genome ejection, and one 5-fold variant (R404A) had a significant defect in viral infectivity. The structures of wtAAV2 packaged with a transgene (AAV2-full) and without a transgene (AAV2-empty) and one 5-fold variant (AAV2-R404A) were determined by cryo-electron microscopy and three dimensional (3D)-image reconstruction to 2.8, 2.9, and 3.6 Å resolution, respectively. These structures revealed the role of stabilizing interactions on the assembly, stability, packaging, and infectivity of the virus capsid. This study provides insight into the structural characterization and functional implications of the rational design of AAV vectors. IMPORTANCE Adeno-associated viruses (AAVs) have been shown to be useful vectors for gene therapy applications. Consequently, AAV has been approved as a biologic for the treatment of several monogenic disorders, and many additional clinical trials are ongoing. These successes have generated significant interest in all aspects of the basic biology of AAV. However, to date, there are limited data available on the importance of the capsid viral protein (VP) symmetry-related interactions required to assemble and maintain the stability of the AAV capsids and the infectivity of the AAV capsids. Characterizing the residue type and interactions at these symmetry-driven assembly interfaces of AAV2 has provided the foundation for understanding their role in AAV vectors (serotypes and engineered chimeras) and has determined the residues or regions of the capsid that can or cannot tolerate alterations.


Assuntos
Capsídeo , Parvovirinae , Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Sorogrupo , Microscopia Crioeletrônica , Proteínas do Capsídeo/metabolismo , Parvovirinae/genética , Parvovirinae/metabolismo , Proteínas Virais/metabolismo , Vetores Genéticos , Montagem de Vírus
2.
Virus Res ; 274: 197771, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31577935

RESUMO

We compared the phenotypes of three mutant AAV2 viruses containing mutations in arginine amino acids (R585, R588 and R484) previously shown to be involved in AAV2 heparan sulfate binding. The transduction efficiencies of wild type and mutant viruses were determined in the eye, the brain and peripheral organs following subretinal, striatal and intravenous injection, respectively, in mice and rats. We found that each of the three mutants (the single mutant R585A; the double mutant R585, 588A; and the triple mutant R585, 588, 484A) had a unique phenotype compared to wt and each other. R585A was completely defective for transducing peripheral organs via intravenous injection, suggesting that R585A may be useful for targeting peripheral organs by substitution of peptide ligands in the capsid surface. In the brain, all three mutants displayed widespread transduction, with the double mutant R585, 588A displaying the greatest spread and the greatest number of transduced neurons. The double mutant was also extremely efficient for retrograde transport, while the triple mutant was almost completely defective for retrograde transport. This suggested that R484 may be directly involved in interaction with the transport machinery. Finally, the double mutant also displayed improved transduction of the eye compared to wild type and the other mutants.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Parvovirinae/fisiologia , Animais , Transporte Axonal/genética , Proteínas do Capsídeo/metabolismo , Dependovirus , Feminino , Masculino , Camundongos , Mutação , Parvovirinae/genética , Parvovirinae/metabolismo , Fenótipo , Ligação Proteica , Ratos , Tropismo Viral/genética
3.
Neuroscience ; 377: 174-183, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29526688

RESUMO

Phospholipase D2 (PLD2), an enzyme involved in vesicle trafficking and membrane signaling, interacts with α-synuclein, a protein known to contribute in the development of Parkinson disease (PD). We previously reported that PLD2 overexpression in rat substantia nigra pars compacta (SNc) causes a rapid neurodegeneration of dopamine neurons, and that α-synuclein suppresses PLD2-induced nigral degeneration (Gorbatyuk et al., 2010). Here, we report that PLD2 toxicity is due to its lipase activity. Overexpression of a catalytically inactive mutant (K758R) of PLD2 prevents the loss of dopaminergic neurons in the SNc and does not show signs of toxicity after 10 weeks of overexpression. Further, mutant K758R does not affect dopamine levels in the striatum. In contrast, mutants that prevent PLD2 interaction with dynamin or growth factor receptor bound protein 2 (Grb2) but retained lipase activity, continued to show rapid neurodegeneration. These findings suggest that neither the interaction of PLD2 with dynamin, which has a role in vesicle trafficking, nor the PLD2 interaction with Grb2, which has multiple roles in cell cycle control, chemotaxis and activation of tyrosine kinase complexes, are the primary cause of neurodegeneration. Instead, the synthesis of phosphatidic acid (the product of PLD2), which is a second messenger in multiple cellular pathways, appears to be the key to PLD2 induced neurodegeneration. The fact that α-synuclein is a regulator of PLD2 activity suggests that regulation of PLD2 activity could be important in the progression of PD.


Assuntos
Degeneração Neural/enzimologia , Transtornos Parkinsonianos/enzimologia , Parte Compacta da Substância Negra/enzimologia , Fosfolipase D/metabolismo , Animais , Dinaminas/metabolismo , Proteína Adaptadora GRB2/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Mutação , Degeneração Neural/patologia , Neurônios/enzimologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Fosfolipase D/genética , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Hum Gene Ther ; 28(4): 308-313, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28335618

RESUMO

AAV has been studied for 55 years and has been developed as a vector for about 35 years. By now, there is a fairly good idea of the dimensions of what would be useful to know to employ AAV optimally as a vector, but there are still many unanswered questions within the system. As with all biological systems, each good experiment raises further questions to answer. This article provides an overview of those areas in which unknown information can be identified and of those questions that have not yet been recognized. Some of these are touched on in the six review articles in this issue of Human Gene Therapy.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Humanos
5.
J Virol ; 90(19): 8542-51, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440903

RESUMO

UNLABELLED: The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the ßA strand region under the icosahedral 2-fold axis rather than antiparallel to the ßB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. IMPORTANCE: The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid-Rep interaction. Understanding this mechanism may aid in the improvement of AAV packaging efficiency, which is currently ∼1:10 (10%) genome packaged to empty capsid in vector preparations. This report identifies regions of the AAV capsid that play roles in genome packaging and that may be important for Rep recognition. It also demonstrates the need to maintain capsid stability for the success of this process. This information is important for efforts to improve AAV genome packaging and will also inform the engineering of AAV capsid variants for improved tropism, specific tissue targeting, and host antibody escape by defining amino acids that cannot be altered without detriment to infectious vector production.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Dependovirus/fisiologia , Dependovirus/ultraestrutura , Montagem de Vírus , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Imageamento Tridimensional , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Ligação Proteica , Mapeamento de Interação de Proteínas , Vírion/química , Vírion/efeitos da radiação
6.
J Virol ; 90(16): 7196-7204, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252527

RESUMO

UNLABELLED: We previously reported that an amino acid substitution, Y704A, near the 2-fold interface of adeno-associated virus (AAV) was defective for transcription of the packaged genome (M. Salganik, F. Aydemir, H. J. Nam, R. McKenna, M. Agbandje-McKenna, and N. Muzyczka, J Virol 88:1071-1079, 2013, doi: http://dx.doi.org/10.1128/JVI.02093-13). In this report, we have characterized the defect in 6 additional capsid mutants located in a region ∼30 Šin diameter on the surface of the AAV type 2 (AAV2) capsid near the 2-fold interface. These mutants, which are highly conserved among primate serotypes, displayed a severe defect (3 to 6 logs) in infectivity. All of the mutants accumulated significant levels of uncoated DNA in the nucleus, but none of the mutants were able to accumulate significant amounts of genomic mRNA postinfection. In addition, wild-type (wt) capsids that were bound to the conformational antibody A20, which is known to bind the capsid surface in the region of the mutants, were also defective for transcription. In all cases, the mutant virus particles, as well as the antibody-bound wild-type capsids, were able to enter the cell, travel to the nucleus, uncoat, and synthesize a second strand but were unable to transcribe their genomes. Taken together, the phenotype of these mutants provides compelling evidence that the AAV capsid plays a role in the transcription of its genome, and the mutants map this functional region on the surface of the capsid near the 2-fold interface. This appears to be the first example of a viral structural protein that is also involved in the transcription of the viral genome that it delivers to the nucleus. IMPORTANCE: Many viruses package enzymes within their capsids that assist in expressing their genomes postinfection, e.g., retroviruses. A number of nonenveloped viruses, including AAV, carry proteases that are needed for capsid maturation or for capsid modification during infection. We describe here what appears to be the first example of a nonenveloped viral capsid that appears to have a role in promoting transcription. A total of six mutants at the AAV capsid 2-fold interface were shown to have a severe defect in expressing their genomes, and the defect was at the level of mRNA accumulation. This suggests that AAV capsids have a novel role in promoting the transcription of the genomes that they have packaged. Since wt virions could not complement the mutant viruses, and the mutant viruses did not effectively inhibit wt gene expression, our results suggest that the capsid exerts its effect on transcription in cis.


Assuntos
Capsídeo/fisiologia , Dependovirus/genética , Genoma Viral/genética , Mutação/genética , Infecções por Parvoviridae/virologia , Transcrição Gênica/genética , Proteínas Estruturais Virais/genética , Substituição de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Fenótipo , RNA Viral/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Vírion
8.
Mol Ther Methods Clin Dev ; 2: 15037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491705

RESUMO

Crossing the blood-brain and the blood-cerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.

10.
J Virol ; 89(2): 952-61, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355884

RESUMO

UNLABELLED: We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573-580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668-1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo. The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE: The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy.


Assuntos
Dependovirus/genética , Expressão Gênica , Vetores Genéticos , Hepatócitos/virologia , Transgenes , Animais , Linhagem Celular , Dependovirus/fisiologia , Terapia Genética/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Deleção de Sequência , Montagem de Vírus
11.
J Virol ; 89(3): 1794-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410874

RESUMO

UNLABELLED: The clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions. IMPORTANCE: The adeno-associated viruses (AAVs) are promising vectors for in vivo therapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of "polyclonal" reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.


Assuntos
Anticorpos Antivirais/imunologia , Dependovirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Microscopia Crioeletrônica , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Ligação Proteica , Sorogrupo
13.
Mol Ther ; 22(8): 1484-1493, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24869933

RESUMO

Gene therapy has not yet improved cystic fibrosis (CF) patient lung function in human trials, despite promising preclinical studies. In the human CF lung, inhaled gene vectors must penetrate the viscoelastic secretions coating the airways to reach target cells in the underlying epithelium. We investigated whether CF sputum acts as a barrier to leading adeno-associated virus (AAV) gene vectors, including AAV2, the only serotype tested in CF clinical trials, and AAV1, a leading candidate for future trials. Using multiple particle tracking, we found that sputum strongly impeded diffusion of AAV, regardless of serotype, by adhesive interactions and steric obstruction. Approximately 50% of AAV vectors diffused >1,000-fold more slowly in sputum than in water, with large patient-to-patient variation. We thus tested two strategies to improve AAV diffusion in sputum. We showed that an AAV2 mutant engineered to have reduced heparin binding diffused twice as fast as AAV2 on average, presumably because of reduced adhesion to sputum. We also discovered that the mucolytic N-acetylcysteine could markedly enhance AAV diffusion by altering the sputum microstructure. These studies underscore that sputum is a major barrier to CF gene delivery, and offer strategies for increasing AAV penetration through sputum to improve clinical outcomes.


Assuntos
Fibrose Cística/virologia , Dependovirus/fisiologia , Vetores Genéticos/uso terapêutico , Escarro/virologia , Acetilcisteína/farmacologia , Linhagem Celular , Fibrose Cística/terapia , Dependovirus/classificação , Dependovirus/genética , Terapia Genética , Células HEK293 , Humanos , Microscopia Eletrônica de Varredura , Escarro/efeitos dos fármacos
14.
J Virol ; 88(2): 1071-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198419

RESUMO

A group of four interacting amino acids in adeno-associated virus type 8 (AAV8) called the pH quartet has been shown to undergo a structural change when subjected to acidic pH comparable to that seen in endosomal compartments. We examined the phenotypes of mutants with mutations in these amino acids as well as several nearby residues in the background of AAV2. We found that three of the mutations in this region (Y704A, E562A, and E564A) produce normal titers of mature capsids but are extremely defective for transduction (>10(7)-fold). The remaining mutants were also defective for transduction, but the defect in these mutants (E563A, E561A, H526A, and R389A) is not as severe (3- to 22-fold). Two other mutants (Y700A and Y730A) were found to be defective for virus assembly. One of the extremely defective mutants (Y704A) was found to enter the cell, traffic to the nucleus, and uncoat its DNA nearly as efficiently as the wild type. This suggested that some step after nuclear entry and uncoating was defective. To see if the extremely defective mutants were impaired in second-strand synthesis, the Y704A, E562A, and E564A mutants containing self-complementary DNA were compared with virus containing single-stranded genomes. Two of the mutants (Y704A and E564A) showed 1-log and 3-log improvements in infectivity, respectively, while the third mutant (E562A) showed no change. This suggested that inhibition of second-strand synthesis was responsible for some but not most of the defect in these mutants. Comparison of Y704A mRNA synthesis with that of the wild-type capsid showed that accumulation of steady-state mRNA in the Y704A mutant was reduced 450-fold, even though equal genome numbers were uncoated. Our experiments have identified a novel capsid function. They suggest that AAV capsids may play a role in the initiation of both second-strand synthesis and transcription of the input genome.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Genoma Viral , Infecções por Parvoviridae/virologia , RNA Viral/genética , Recombinação Genética , Transcrição Gênica , Proteínas do Capsídeo/genética , Dependovirus/fisiologia , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutação , RNA Viral/metabolismo
15.
Hum Gene Ther ; 25(3): 212-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24299301

RESUMO

Scalable and genetically stable recombinant adeno-associated virus (rAAV) production systems combined with facile adaptability for an extended repertoire of AAV serotypes are required to keep pace with the rapidly increasing clinical demand. For scalable high-titer production of the full range of rAAV serotypes 1-12, we developed OneBac, consisting of stable insect Sf9 cell lines harboring silent copies of AAV1-12 rep and cap genes induced upon infection with a single baculovirus that also carries the rAAV genome. rAAV burst sizes reach up to 5 × 10(5) benzonase-resistant, highly infectious genomic particles per cell, exceeding typical yields of current rAAV production systems. In contrast to recombinant rep/cap baculovirus strains currently employed for large-scale rAAV production, the Sf9rep/cap cell lines are genetically stable, leading to undiminished rAAV burst sizes over serial passages. Thus, OneBac combines full AAV serotype options with the capacity for stable scale-up production, the current bottleneck for the transition of AAV from gene therapy trials to routine clinical treatment.


Assuntos
Baculoviridae/genética , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/isolamento & purificação , Animais , Baculoviridae/metabolismo , Linhagem Celular , Dependovirus/classificação , Dependovirus/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Células HeLa , Vírus Auxiliares , Humanos , Transdução Genética , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Annu Rev Virol ; 1(1): 427-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26958729

RESUMO

Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted 30 years ago for use as a gene transfer vehicle. It is capable of transducing a wide range of species and tissues in vivo with no evidence of toxicity, and it generates relatively mild innate and adaptive immune responses. We review the basic biology of AAV, the history of progress in AAV vector technology, and some of the clinical and research applications where AAV has shown success.

17.
Protein Expr Purif ; 92(1): 21-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23993979

RESUMO

The α5ß1 integrin heterodimer is involved in many cellular processes and is an anti-cancer therapeutic target. Therefore, access to quantities of protein suitable for studies aimed at understanding its biological functions is important. To this end, a large-scale protein expression system, utilizing the recombinant baculovirus/SF9 insect cell expression system, was created to produce the extracellular domain of the α5ß1 integrin. An incorporated 8X-histidine tag enabled one-step nickel-column purification. Following sequence confirmation by LC-MS/MS, the conformation of the heterodimer was characterized by native dot blot and negative stain electron microscopy. Cellular transduction inhibition studies confirmed biological activity. The system allows expression and purification of α5ß1 integrin in quantities suitable for an array of different experiments including structural biology.


Assuntos
Clonagem Molecular/métodos , Integrina alfa5beta1/genética , Integrina alfa5beta1/isolamento & purificação , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Linhagem Celular , Cromatografia Líquida , Humanos , Insetos , Integrina alfa5beta1/química , Integrina alfa5beta1/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Regulação para Cima
18.
J Virol ; 87(20): 11187-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926356

RESUMO

The adeno-associated viruses (AAVs) display differential cell binding, transduction, and antigenic characteristics specified by their capsid viral protein (VP) composition. Toward structure-function annotation, the crystal structure of AAV5, one of the most sequence diverse AAV serotypes, was determined to 3.45-Å resolution. The AAV5 VP and capsid conserve topological features previously described for other AAVs but uniquely differ in the surface-exposed HI loop between ßH and ßI of the core ß-barrel motif and have pronounced conformational differences in two of the AAV surface variable regions (VRs), VR-IV and VR-VII. The HI loop is structurally conserved in other AAVs despite amino acid differences but is smaller in AAV5 due to an amino acid deletion. This HI loop is adjacent to VR-VII, which is largest in AAV5. The VR-IV, which forms the larger outermost finger-like loop contributing to the protrusions surrounding the icosahedral 3-fold axes of the AAVs, is shorter in AAV5, creating a smoother capsid surface topology. The HI loop plays a role in AAV capsid assembly and genome packaging, and VR-IV and VR-VII are associated with transduction and antigenic differences, respectively, between the AAVs. A comparison of interior capsid surface charge and volume of AAV5 to AAV2 and AAV4 showed a higher propensity of acidic residues but similar volumes, consistent with comparable DNA packaging capacities. This structure provided a three-dimensional (3D) template for functional annotation of the AAV5 capsid with respect to regions that confer assembly efficiency, dictate cellular transduction phenotypes, and control antigenicity.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Cristalografia por Raios X , Eletroquímica , Modelos Moleculares , Conformação Proteica
19.
J Virol ; 87(16): 9111-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760240

RESUMO

Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized. Cryo-electron microscopy and three-dimensional image reconstruction were used to define the locations of epitopes to which monoclonal fragment antibodies (Fabs) against AAV1, AAV2, AAV5, and AAV6 bind. Pseudoatomic modeling showed that, in each serotype, Fabs bound to a limited number of sites near the protrusions surrounding the 3-fold axes of the T=1 icosahedral capsids. For the closely related AAV1 and AAV6, a common Fab exhibited substoichiometric binding, with one Fab bound, on average, between two of the three protrusions as a consequence of steric crowding. The other AAV Fabs saturated the capsid and bound to the walls of all 60 protrusions, with the footprint for the AAV5 antibody extending toward the 5-fold axis. The angle of incidence for each bound Fab on the AAVs varied and resulted in significant differences in how much of each viral capsid surface was occluded beyond the Fab footprints. The AAV-antibody interactions showed a common set of footprints that overlapped some known receptor-binding sites and transduction determinants, thus suggesting potential mechanisms for virus neutralization by the antibodies.


Assuntos
Anticorpos Antivirais/imunologia , Capsídeo/imunologia , Dependovirus/imunologia , Epitopos/imunologia , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Capsídeo/química , Capsídeo/metabolismo , Microscopia Crioeletrônica , Epitopos/química , Epitopos/metabolismo , Humanos , Imageamento Tridimensional , Substâncias Macromoleculares/química , Modelos Moleculares , Ligação Proteica
20.
Protein Expr Purif ; 89(2): 225-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583935

RESUMO

A recombinant integrin expression system has been created for the large-scale production of αVß5 integrin extracellular domains that take advantage of Fos and Jun dimerization for expression in bacterial, insect, and mammalian cells. This utilizes an all-in-one vector, pQE-TriSystem, with molecular machinery for parallel expression without the need of additional subcloning. Optimal expression in HEK293 cells was determined by a time course analysis. The heterodimer was purified in a one-step nickel column purification scheme, and the sequence and functional state were confirmed by mass spectrometry and inhibition assays, respectively. The yields of αVß5 integrin obtained are in quantities suitable for multiple applications including structural biology and functional assays.


Assuntos
Receptores de Vitronectina/genética , Receptores de Vitronectina/isolamento & purificação , Sequência de Aminoácidos , Animais , Expressão Gênica , Vetores Genéticos/genética , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Plasmídeos/genética , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Receptores de Vitronectina/química , Receptores de Vitronectina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...