Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5295, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438408

RESUMO

Understand the dynamics of cancer stem cells (CSCs), prevent the non-recurrence of cancers and develop therapeutic strategies to destroy both cancer cells and CSCs remain a challenge topic. In this paper, we study both analytically and numerically the dynamics of CSCs under radiotherapy effects. The dynamical model takes into account the diffusion of cells, the de-differentiation (or plasticity) mechanism of differentiated cancer cells (DCs) and the time delay on the interaction between microRNAs molecules (microRNAs) with DCs. The stability of the model system is studied by using a Hopf bifurcation analysis. We mainly investigate on the critical time delay τ c , that represents the time for DCs to transform into CSCs after the interaction of microRNAs with DCs. Using the system parameters, we calculate the value of τ c for prostate, lung and breast cancers. To confirm the analytical predictions, the numerical simulations are performed and show the formation of spatiotemporal circular patterns. Such patterns have been found as promising diagnostic and therapeutic value in management of cancer and various diseases. The radiotherapy is applied in the particular case of prostate model. We calculate the optimum dose of radiation and determine the probability of avoiding local cancer recurrence after radiotherapy treatment. We find numerically a complete eradication of patterns when the radiotherapy is applied before a time t < τ c . This scenario induces microRNAs to act as suppressors as experimentally observed in prostate cancer. The results obtained in this paper will provide a better concept for the clinicians and oncologists to understand the complex dynamics of CSCs and to design more efficacious therapeutic strategies to prevent the non-recurrence of cancers.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Diferenciação Celular , Células-Tronco Neoplásicas , Comunicação Celular , MicroRNAs/genética
2.
Nonlinear Dyn ; : 1-21, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37361003

RESUMO

We investigate the dynamics of a SIRS epidemiological model taking into account cross-superdiffusion and delays in transmission, Beddington-DeAngelis incidence rate and Holling type II treatment. The superdiffusion is induced by inter-country and inter-urban exchange. The linear stability analysis for the steady-state solutions is performed, and the basic reproductive number is calculated. The sensitivity analysis of the basic reproductive number is presented, and we show that some parameters strongly influence the dynamics of the system. A bifurcation analysis to determine the direction and stability of the model is carried out using the normal form and center manifold theorem. The results reveal a proportionality between the transmission delay and the diffusion rate. The numerical results show the formation of patterns in the model, and their epidemiological implications are discussed.

3.
Comput Methods Programs Biomed ; 212: 106469, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34715516

RESUMO

BACKGROUND AND OBJECTIVE: In this work, we analyze the spatial-temporal dynamics of a susceptible-infected-recovered (SIR) epidemic model with time delays. To better describe the dynamical behavior of the model, we take into account the cumulative effects of diffusion in the population dynamics, and the time delays in both the Holling type II treatment and the disease transmission process, respectively. METHODS: We perform linear stability analyses on the disease-free and endemic equilibria. We provide the expression of the basic reproduction number and set conditions on the backward bifurcation using Castillo's theorem. The values of the critical time transmission, the treatment delays and the relationship between them are established. RESULTS: We show that the treatment rate decreases the basic reproduction number while the transmission rate significantly affects the bifurcation process in the system. The transmission and treatment time-delays are found to be inversely proportional to the susceptible and infected diffusion rates. The analytical results are numerically tested. The results show that the treatment rate significantly reduces the density of infected population and ensures the transition from the unstable to the stable domain. Moreover, the system is more sensible to the treatment in the stable domain. CONCLUSIONS: The density of infected population increases with respect to the infected and susceptible diffusion rates. Both effects of treatment and transmission delays significantly affect the behavior of the system. The transmission time-delay at the critical point ensures the transition from the stable (low density) to the unstable (high density) domain.


Assuntos
Epidemias , Modelos Biológicos , Número Básico de Reprodução , Simulação por Computador
4.
R Soc Open Sci ; 7(11): 200774, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33391787

RESUMO

The study and the investigation of structural and dynamical properties of complex systems have attracted considerable interest among scientists in general and physicists and biologists in particular. The present review paper represents a broad overview of the research performed over the nonlinear dynamics of DNA, devoted to some different aspects of DNA physics and including analytical, quantum and computational tools to understand nonlinear DNA physics. We review in detail the semi-discrete approximation within helicoidal Peyrard-Bishop model and show that localized modulated solitary waves, usually called breathers, can emerge and move along the DNA. Since living processes occur at submolecular level, we then discuss a quantum treatment to address the problem of how charge and energy are transported on DNA and how they may play an important role for the functioning of living cells. While this problem has attracted the attention of researchers for a long time, it is still poorly understood how charge and energy transport can occur at distances comparable to the size of macromolecules. Here, we review a theory based on the mechanism of 'self-trapping' of electrons due to their interaction with mechanical (thermal) oscillation of the DNA structure. We also describe recent computational models that have been developed to capture nonlinear mechanics of DNA in vitro and in vivo, possibly under topological constraints. Finally, we provide some conjectures on potential future directions for this field.

5.
Phys Rev E ; 97(3-1): 032129, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776049

RESUMO

We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α∈ [1,2]. We perform a linear stability analysis and derive the conditions for diffusion-driven wave instabilities. Emphasis is placed on the effect of the superdiffusion exponent α, the diffusion ratio d, and the inertial time τ. As the superdiffusive exponent increases, so does the wave number of the Turing instability. Opposite to the requirement for Turing instability, the activator needs to diffuse sufficiently faster than the inhibitor in order for the wave instability to occur. The critical wave number for wave instability decreases with the superdiffusive exponent and increases with the inertial time. The maximum value of the inertial time for a wave instability to occur in the system is τ_{max}=3.6. As one of the main results of this work, we conclude that both anomalous diffusion and inertial time influence strongly the conditions for wave instabilities in hyperbolic fractional reaction-diffusion systems. Some numerical simulations are conducted as evidence of the analytical predictions derived in this work.

6.
Chaos ; 26(12): 123120, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28039966

RESUMO

We have investigated the impact of the fractional order derivative on the dynamics of modulated waves of a homogeneous DNA chain that is based on site-dependent finite stacking and pairing enthalpies. We have reformulated the classical Lagrangian of the system by including the coordinates depending on the Riemann-Liouville time derivative of fractional order γ. From the Lagrange equation, we derived the fractional nonlinear equation of motion. We obtained the fractional breather as solutions by means of a fractional perturbation technique. The impact of the fractional order is investigated and we showed that depending on the values of γ, there are three types of waves that propagate in DNA. We have static breathers, breathers of small amplitude and high velocity, and breathers of high amplitude and small velocity.


Assuntos
DNA/análise , Movimento (Física) , Dinâmica não Linear , Termodinâmica
7.
Chaos ; 25(6): 063115, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26117109

RESUMO

The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves.


Assuntos
Colágeno/química , Simulação por Computador , Modelos Químicos , Animais , Humanos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...