Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
New Phytol ; 231(5): 2015-2028, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096623

RESUMO

Agricultural management practices that increase soil organic matter (SOM), such as no-tillage (NT) with crop residue retention, together with crop varieties best able to source nutrients from SOM, may help reverse soil degradation and improve soil nutrient supply and uptake by plants in low-input environments of tropical and subtropical areas. Here, we screened germplasm representing genetic diversity within tropical maize breeding programmes in relation to shaping SOM mineralization. Then we assessed effects of contrasting genotypes on nitrification rates, and genotype-by-management history interactions on these rates. SOM-C mineralization and gross nitrification rates varied under different maize genotypes. Cumulative SOM-C mineralization increased with root diameter but decreased with increasing root length. Strong influences of management history and interaction of maize genotype-by-management history on nitrification were observed. Overall, nitrification rates were higher in NT soil with residue retention. We propose that there is potential to exploit genotypic variation in traits associated with SOM mineralization and nitrification within breeding programmes. Root diameter and length could be used as proxies for root-soil interactions driving these processes. Development of maize varieties with enhanced ability to mineralize SOM combined with NT and residue retention to build/replenish SOM could be key to sustainable production.


Assuntos
Solo , Zea mays , Agricultura , Genótipo , Nitrificação , Melhoramento Vegetal , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...