Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0293201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874849

RESUMO

BACKGROUND: Malaria continues to pose a major public health challenge in tropical regions. Despite significant efforts to control malaria in Tanzania, there are still residual transmission cases. Unfortunately, little is known about where these residual malaria transmission cases occur and how they spread. In Tanzania for example, the transmission is heterogeneously distributed. In order to effectively control and prevent the spread of malaria, it is essential to understand the spatial distribution and transmission patterns of the disease. This study seeks to predict areas that are at high risk of malaria transmission so that intervention measures can be developed to accelerate malaria elimination efforts. METHODS: This study employs a geospatial based model to predict and map out malaria risk area in Kilombero Valley. Environmental factors related to malaria transmission were considered and assigned valuable weights in the Analytic Hierarchy Process (AHP), an online system using a pairwise comparison technique. The malaria hazard map was generated by a weighted overlay of the altitude, slope, curvature, aspect, rainfall distribution, and distance to streams in Geographic Information Systems (GIS). Finally, the risk map was created by overlaying components of malaria risk including hazards, elements at risk, and vulnerability. RESULTS: The study demonstrates that the majority of the study area falls under moderate risk level (61%), followed by the low risk level (31%), while the high malaria risk area covers a small area, which occupies only 8% of the total area. CONCLUSION: The findings of this study are crucial for developing spatially targeted interventions against malaria transmission in residual transmission settings. Predicted areas prone to malaria risk provide information that will inform decision-makers and policymakers for proper planning, monitoring, and deployment of interventions.


Assuntos
Malária , Humanos , Tanzânia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Meio Ambiente , Sistemas de Informação Geográfica , Saúde Pública
2.
Parasit Vectors ; 6: 137, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642306

RESUMO

BACKGROUND: Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. METHODS: Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. RESULTS: There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P≤0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P≤0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30 pm, and between 4:30 and 6:00 am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). CONCLUSION: While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance.


Assuntos
Anopheles/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Culex/efeitos dos fármacos , Entomologia/instrumentação , Insetos Vetores/efeitos dos fármacos , Malvaceae/efeitos dos fármacos , Feromônios/farmacologia , Adulto , Animais , Anopheles/fisiologia , Culex/fisiologia , Equipamentos e Provisões , Experimentação Humana , Humanos , Insetos Vetores/fisiologia , Masculino , Malvaceae/fisiologia , Olfato/efeitos dos fármacos , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA