Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798646

RESUMO

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αß+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.

2.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37843832

RESUMO

The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8ß antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Macaca , Tuberculose/microbiologia , Linfócitos T CD8-Positivos , Granuloma , Linfócitos T CD4-Positivos
3.
NPJ Vaccines ; 4: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149352

RESUMO

Tuberculosis (TB) is the leading cause of death from infection worldwide. The only approved vaccine, BCG, has variable protective efficacy against pulmonary TB, the transmissible form of the disease. Therefore, improving this efficacy is an urgent priority. This study assessed whether heterologous prime-boost vaccine regimens in which BCG priming is boosted with either (i) protein and adjuvant (M72 plus AS01E or H56 plus CAF01) delivered intramuscularly (IM), or (ii) replication-defective recombinant adenovirus serotype 5 (Ad5) expressing various Mycobacterium tuberculosis (Mtb) antigens (Ad5(TB): M72, ESAT-6/Ag85b, or ESAT-6/Rv1733/Rv2626/RpfD) administered simultaneously by IM and aerosol (AE) routes, could enhance blood- and lung-localized T-cell immunity and improve protection in a nonhuman primate (NHP) model of TB infection. Ad5(TB) vaccines administered by AE/IM routes following BCG priming elicited ~10-30% antigen-specific CD4 and CD8 T-cell multifunctional cytokine responses in bronchoalveolar lavage (BAL) but did not provide additional protection compared to BCG alone. Moreover, AE administration of an Ad5(empty) control vector after BCG priming appeared to diminish protection induced by BCG. Boosting BCG by IM immunization of M72/AS01E or H56:CAF01 elicited ~0.1-0.3% antigen-specific CD4 cytokine responses in blood with only a transient increase of ~0.5-1% in BAL; these vaccine regimens also failed to enhance BCG-induced protection. Taken together, this study shows that boosting BCG with protein/adjuvant or Ad-based vaccines using these antigens, by IM or IM/AE routes, respectively, do not enhance protection against primary infection compared with BCG alone, in the highly susceptible rhesus macaque model of tuberculosis.

4.
J Med Primatol ; 48(2): 82-89, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723927

RESUMO

BACKGROUND: Tuberculosis (TB) kills millions of people every year. CD4 and CD8 T cells are critical in the immune response against TB. T cells expressing both CD4 and CD8 (CD4CD8 T cells) are functionally active and have not been examined in the context of TB. METHODS: We examine peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage cells (BAL) and lung granulomas from 28 cynomolgus macaques during Mycobacterium tuberculosis (Mtb) infection. RESULTS: CD4CD8 T cells increase in frequency during early Mtb infection in PBMC and BAL from pre-infection. Peripheral, airway, and lung granuloma CD4CD8 T cells have distinct patterns and greater cytokine production than CD4 or CD8 T cells. CONCLUSION: Our data suggest that CD4CD8 T cells transient the blood and airways early during infection to reach the granulomas where they are involved directly in the host response to Mtb.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Macaca fascicularis , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Granuloma/imunologia , Leucócitos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia
5.
PLoS Pathog ; 14(11): e1007337, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383808

RESUMO

Tuberculosis is commonly considered a chronic lung disease, however, extrapulmonary infection can occur in any organ. Even though lymph nodes (LN) are among the most common sites of extrapulmonary Mycobacterium tuberculosis (Mtb) infection, and thoracic LNs are frequently infected in humans, bacterial dynamics and the effect of Mtb infection in LN structure and function is relatively unstudied. We surveyed thoracic LNs from Mtb-infected cynomolgus and rhesus macaques analyzing PET CT scans, bacterial burden, LN structure and immune function. FDG avidity correlated with the presence of live bacteria in LNs at necropsy. Lymph nodes have different trajectories (increasing, maintaining, decreasing in PET activity over time) even within the same animal. Rhesus macaques are more susceptible to Mtb infection than cynomolgus macaques and this is in part due to more extensive LN pathology. Here, we show that Mtb grows to the same level in cynomolgus and rhesus macaque LNs, however, cynomolgus macaques control Mtb at later time points post-infection while rhesus macaques do not. Notably, compared to lung granulomas, LNs are generally poor at killing Mtb, even with drug treatment. Granulomas that form in LNs lack B cell-rich tertiary lymphoid structures, disrupt LN structure by pushing out T cells and B cells, introduce large numbers of macrophages that can serve as niches for Mtb, and destroy normal vasculature. Our data support that LNs are not only sites of antigen presentation and immune activation during infection, but also serve as important sites for persistence of significant numbers of Mtb bacilli.


Assuntos
Linfonodos/imunologia , Macaca/imunologia , Tuberculose/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/patologia , Granuloma/patologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Linfonodos/microbiologia , Macaca/microbiologia , Mycobacterium tuberculosis/patogenicidade , Tomografia por Emissão de Pósitrons
6.
Am J Respir Cell Mol Biol ; 55(6): 899-908, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27509488

RESUMO

Immune cells of the distal airways serve as "first responders" of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung.


Assuntos
Leucócitos/patologia , Pulmão/imunologia , Pulmão/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Humanos , Tuberculose Latente/imunologia , Contagem de Leucócitos , Subpopulações de Linfócitos/imunologia , Macaca fascicularis , Pessoa de Meia-Idade , Fagócitos/metabolismo , Fenótipo , Adulto Jovem
7.
PLoS Pathog ; 11(1): e1004603, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25611466

RESUMO

Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few "multi-functional" T cells were observed. However, granulomas were found to be "multi-functional" with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro- and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas.


Assuntos
Citocinas/metabolismo , Granuloma do Sistema Respiratório/imunologia , Inflamação/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Anti-Inflamatórios/metabolismo , Células Cultivadas , Granuloma do Sistema Respiratório/metabolismo , Granuloma do Sistema Respiratório/microbiologia , Humanos , Imunidade Celular , Infertilidade/imunologia , Infertilidade/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Contagem de Linfócitos , Macaca fascicularis , Linfócitos T/patologia , Tuberculose/metabolismo
8.
Nat Med ; 20(1): 75-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24336248

RESUMO

Over 30% of the world's population is infected with Mycobacterium tuberculosis (Mtb), yet only ∼5-10% will develop clinical disease. Despite considerable effort, researchers understand little about what distinguishes individuals whose infection progresses to active tuberculosis (TB) from those whose infection remains latent for decades. The variable course of disease is recapitulated in cynomolgus macaques infected with Mtb. Active disease occurs in ∼45% of infected macaques and is defined by clinical, microbiologic and immunologic signs, whereas the remaining infected animals are clinically asymptomatic. Here, we use individually marked Mtb isolates and quantitative measures of culturable and cumulative bacterial burden to show that most lung lesions are probably founded by a single bacterium and reach similar maximum burdens. Despite this observation, the fate of individual lesions varies substantially within the same host. Notably, in active disease, the host sterilizes some lesions even while others progress. Our data suggest that lesional heterogeneity arises, in part, through differential killing of bacteria after the onset of adaptive immunity. Thus, individual lesions follow diverse and overlapping trajectories, suggesting that critical responses occur at a lesional level to ultimately determine the clinical outcome of infection. Defining the local factors that dictate outcome will be useful in developing effective interventions to prevent active TB.


Assuntos
Imunidade Adaptativa/imunologia , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Progressão da Doença , Granuloma/imunologia , Granuloma/microbiologia , Isoniazida , Pulmão/microbiologia , Macaca fascicularis , Modelos Biológicos , Dinâmica Populacional , Tomografia por Emissão de Pósitrons , Tuberculose/prevenção & controle
9.
J Immunol ; 190(9): 4707-16, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23547119

RESUMO

The effect of Mycobacterium tuberculosis inocula size on T cell priming in the lymph node and effector T cells in the lung remains controversial. In this study, we used a naive mouse model, without the transfer of transgenic T cells, in conjunction with mathematical model to test whether infection with higher aerosolized inocula would lead to increased priming of M. tuberculosis-specific T cells in the lung-draining lymph node. Our data do not support that inoculum size has a measurable influence on T cell priming in the lymph nodes but is associated with more cells overall in the lung, including T cells. To account for increased T cells in the lungs, we tested several possible mechanisms, and recruitment of T cells to the lungs was most influenced by inoculum dose. We also identified IL-10 as a possible mechanism to explain the lack of influence of inoculum dose on priming of T cells in the lymph node.


Assuntos
Linfonodos/imunologia , Ativação Linfocitária/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Interferon gama/imunologia , Interleucina-10/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Dados de Sequência Molecular , Tuberculose Pulmonar/imunologia
10.
PLoS One ; 6(7): e22401, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789257

RESUMO

Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens.


Assuntos
Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macaca/microbiologia , Macaca/virologia , Vírus/imunologia , Animais , Francisella tularensis/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/virologia , Camundongos , Mycobacterium tuberculosis/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/genética , Especificidade da Espécie , Tuberculose/genética , Tuberculose/microbiologia , Tularemia/genética , Tularemia/microbiologia , Regulação para Cima
11.
Infect Immun ; 73(5): 3192-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15845532

RESUMO

The importance in vivo of P2X7 receptors in control of virulent Mycobacterium tuberculosis was examined in a low-dose aerosol infection mouse model. P2X7(-/-) mice controlled infection in lungs as well as wild-type mice, suggesting that the P2X7 receptor is not required for control of pulmonary M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Receptores Purinérgicos P2/metabolismo , Tuberculose Pulmonar/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7 , Tuberculose Pulmonar/microbiologia
12.
Immunity ; 19(6): 823-35, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14670300

RESUMO

CD40(-/-) mice succumbed to low-dose aerosol infection with M. tuberculosis due to deficient IL-12 production leading to impaired priming of IFN-gamma T cell responses. In contrast, CD40L(-/-) mice were resistant to M. tuberculosis. This asymmetry in outcome of infection between the two knockout strains is likely due to the existence of an alternative ligand for CD40. Both in vitro M. tuberculosis infection and recombinant M. tuberculosis Hsp70 elicited IL-12 production from WT dendritic cells. This response was absent in both CD40(-/-) dendritic cells and CD40(-/-) mice, suggesting that M. tuberculosis Hsp70 serves as an alternative ligand for CD40 in vivo.


Assuntos
Antígenos CD40/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Antígenos CD40/genética , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Predisposição Genética para Doença , Interferon gama/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Linfócitos T/metabolismo , Tuberculose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...