Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Assuntos
Pulmão , Transcriptoma , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Recém-Nascido , Lactente , Criança , Pré-Escolar , Masculino , Feminino , Análise de Sequência de RNA/métodos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
2.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540357

RESUMO

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Assuntos
Perfilação da Expressão Gênica , Pulmão , Animais , Humanos , Camundongos , Pulmão/metabolismo , Mamíferos/genética , Pericitos , Fenótipo , Transcriptoma/genética , Recém-Nascido
3.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37066307

RESUMO

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

4.
Toxicol Sci ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847456

RESUMO

Developmental exposures can influence life-long health; yet, counteracting negative consequences is challenging due to poor understanding of cellular mechanisms. The aryl hydrocarbon receptor (AHR) binds many small molecules, including numerous pollutants. Developmental exposure to the signature environmental AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly dampens adaptive immune responses to influenza A virus (IAV) in adult offspring. CD8+ cytotoxic T lymphocytes (CTL) are crucial for successful infection resolution, which depends on the number generated and the complexity of their functionality. Prior studies showed developmental AHR activation significantly reduced the number of virus-specific CD8+ T cells, but impact on their functions is less clear. Other studies showed developmental exposure was associated with differences in DNA methylation in CD8+ T cells. Yet, empirical evidence that differences in DNA methylation are causally related to altered CD8+ T cell function is lacking. The two objectives were to ascertain whether developmental AHR activation affects CTL function, and whether differences in methylation contribute to reduced CD8+ T cell responses to infection. Developmental AHR triggering significantly reduced CTL polyfunctionality, and modified the transcriptional program of CD8+ T cells. S-adenosylmethionine (SAM), which increases DNA methylation, but not Zebularine, which diminishes DNA methylation, restored polyfunctionality and boosted the number of virus-specific CD8+ T cells. These findings suggest that diminished methylation, initiated by developmental exposure to an AHR-binding chemical, contributes to durable changes in antiviral CD8+ CTL functions later in life. Thus, deleterious consequence of development exposure to environmental chemicals are not permanently fixed, opening the door for interventional strategies to improve health.

5.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35652336

RESUMO

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Assuntos
Antineoplásicos , Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Criança , Humanos , Antineoplásicos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Azepinas/uso terapêutico , Pirimidinas/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Aurora Quinase A , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos
6.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977101

RESUMO

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Assuntos
Doença de Hodgkin , Humanos , Adulto Jovem , Adulto , Doença de Hodgkin/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Códon sem Sentido , Sequenciamento Completo do Genoma , Linhagem , Proteínas de Ciclo Celular/genética
7.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176137

RESUMO

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Aberrações Cromossômicas , Éxons , Genômica , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Recidiva
8.
Nat Commun ; 12(1): 4155, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230480

RESUMO

The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Animais , Quimiocinas , Vasos Coronários/metabolismo , Embrião de Mamíferos , Transição Epitelial-Mesenquimal , Expressão Gênica , Coração , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Proteínas Nucleares , Pericárdio/embriologia , Fator de Resposta Sérica , Transdução de Sinais , Transativadores , Fatores de Transcrição/metabolismo , Transcriptoma
9.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857288

RESUMO

Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Inflamação/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estresse Fisiológico/fisiologia , Transativadores/metabolismo , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Homeostase/fisiologia , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Environ Health Perspect ; 129(1): 17007, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449811

RESUMO

BACKGROUND: Early life environmental exposures can have lasting effects on the function of the immune system and contribute to disease later in life. Epidemiological studies have linked early life exposure to xenobiotics that bind the aryl hydrocarbon receptor (AhR) with dysregulated immune responses later in life. Among the immune cells influenced by developmental activation of the AhR are CD4+ T cells. Yet, the underlying affected cellular pathways via which activating the AhR early in life causes the responses of CD4+ T cells to remain affected into adulthood remain unclear. OBJECTIVE: Our goal was to identify cellular mechanisms that drive impaired CD4+ T-cell responses later in life following maternal exposure to an exogenous AhR ligand. METHODS: C57BL/6 mice were vertically exposed to the prototype AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), throughout gestation and early postnatal life. The transcriptome and DNA methylation patterns were evaluated in CD4+ T cells isolated from naïve and influenza A virus (IAV)-infected adult mice that were developmentally exposed to TCDD or vehicle control. We then assessed the influence of DNA methylation-altering drug therapies on the response of CD4+ T cells from developmentally exposed mice to infection. RESULTS: Gene and protein expression showed that developmental AhR activation reduced CD4+ T-cell expansion and effector functions during IAV infection later in life. Furthermore, whole-genome bisulfite sequencing analyses revealed that developmental AhR activation durably programed DNA methylation patterns across the CD4+ T-cell genome. Treatment of developmentally exposed offspring with DNA methylation-altering drugs alleviated some, but not all, of the impaired CD4+ T-cell responses. DISCUSSION: Taken together, these results indicate that skewed DNA methylation is one of the mechanisms by which early life exposures can durably change the function of T cells in mice. Furthermore, treatment with DNA methylation-altering drugs after the exposure restored some aspects of CD4+ T-cell functional responsiveness. https://doi.org/10.1289/EHP7699.


Assuntos
Linfócitos T CD4-Positivos , Metilação de DNA , Exposição Ambiental , Infecções por Orthomyxoviridae , Dibenzodioxinas Policloradas , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Metilação de DNA/efeitos dos fármacos , Feminino , Vírus da Influenza A/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Dibenzodioxinas Policloradas/toxicidade , Gravidez , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Circ Res ; 127(6): 827-846, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32611237

RESUMO

RATIONALE: Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE: To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS: Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-ß (transforming growth factor-ß)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-ß stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-ß-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-ß-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS: Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Miofibroblastos/enzimologia , Biossíntese de Proteínas , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Animais , Estudos de Casos e Controles , Colágeno/biossíntese , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Proteínas de Ligação a TGF-beta Latente/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Células NIH 3T3 , Domínios Proteicos Ricos em Prolina , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais , Sulfotransferases/biossíntese , Sulfotransferases/genética
12.
Cancer Discov ; 10(4): 536-551, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974170

RESUMO

Venetoclax-based therapy can induce responses in approximately 70% of older previously untreated patients with acute myeloid leukemia (AML). However, up-front resistance as well as relapse following initial response demonstrates the need for a deeper understanding of resistance mechanisms. In the present study, we report that responses to venetoclax +azacitidine in patients with AML correlate closely with developmental stage, where phenotypically primitive AML is sensitive, but monocytic AML is more resistant. Mechanistically, resistant monocytic AML has a distinct transcriptomic profile, loses expression of venetoclax target BCL2, and relies on MCL1 to mediate oxidative phosphorylation and survival. This differential sensitivity drives a selective process in patients which favors the outgrowth of monocytic subpopulations at relapse. Based on these findings, we conclude that resistance to venetoclax + azacitidine can arise due to biological properties intrinsic to monocytic differentiation. We propose that optimal AML therapies should be designed so as to independently target AML subclones that may arise at differing stages of pathogenesis. SIGNIFICANCE: Identifying characteristics of patients who respond poorly to venetoclax-based therapy and devising alternative therapeutic strategies for such patients are important topics in AML. We show that venetoclax resistance can arise due to intrinsic molecular/metabolic properties of monocytic AML cells and that such properties can potentially be targeted with alternative strategies.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/uso terapêutico , Idoso , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Sulfonamidas/farmacologia
13.
Leukemia ; 34(2): 391-403, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31492897

RESUMO

Bone marrow mesenchymal stromal cells (MSCs) constitute one of the important components of the hematopoietic microenvironmental niche. In vivo studies have shown that depletion of marrow MSCs resulted in reduction of hematopoietic stem cell content, and there is in vitro evidence that marrow MSCs are able to support leukemia progenitor cell proliferation and survival and provide resistance to cytotoxic therapies. How MSCs from leukemia marrow differ from normal counterparts and how they are influenced by the presence of leukemia stem and progenitor cells are still incompletely understood. In this work, we compared normal donor (ND) and acute myelogenous leukemia (AML) derived MSCs and found that AML-MSCs had increased adipogenic potential with improved ability to support survival of leukemia progenitor cells. To identify underlying changes, RNA-Seq analysis was performed. Gene ontology and pathway analysis revealed adipogenesis to be among the set of altered biological pathways dysregulated in AML-MSCs as compared with ND-MSCs. Expression of both SOX9 and EGR2 was decreased in AML-MSCs as compared with ND-MSCs. Increasing expression of SOX9 decreased adipogenic potential of AML-MSCs and decreased their ability to support AML progenitor cells. These findings suggest that AML-MSCs possess adipogenic potential which may enhance support of leukemia progenitor cells.


Assuntos
Células da Medula Óssea/patologia , Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/patologia , Adipogenia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fatores de Transcrição SOX9/metabolismo
14.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30776794

RESUMO

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Assuntos
Separação Celular , Células Epiteliais/fisiologia , Pulmão/citologia , Doadores de Tecidos , Fatores Etários , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Queratina-5/genética , Queratina-5/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Fenótipo , Cultura Primária de Células , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análise de Célula Única
15.
Haematologica ; 105(3): 585-597, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31101752

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Doenças Autoimunes , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas , Modelos Animais de Doenças , Humanos , Camundongos
16.
Sci Rep ; 9(1): 11489, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391494

RESUMO

Early life environmental exposures drive lasting changes to the function of the immune system and can contribute to disease later in life. One of the ways environmental factors act is through cellular receptors. The aryl hydrocarbon receptor (AHR) is expressed by immune cells and binds numerous xenobiotics. Early life exposure to chemicals that bind the AHR impairs CD4+ T cell responses to influenza A virus (IAV) infection in adulthood. However, the cellular mechanisms that underlie these durable changes remain poorly defined. Transcriptomic profiling of sorted CD4+ T cells identified changes in genes involved in proliferation, differentiation, and metabolic pathways were associated with triggering AHR during development. Functional bioassays confirmed that CD4+ T cells from infected developmentally exposed offspring exhibit reduced proliferation, differentiation, and cellular metabolism. Thus, developmental AHR activation shapes T cell responsive capacity later in life by affecting integrated cellular pathways, which collectively alter responses later in life. Given that coordinated shifts in T cell metabolism are essential for T cell responses to numerous challenges, and that humans are constantly exposed to many different types of AHR ligands, this has far-reaching implications for how AHR signaling, particularly during development, durably influences T cell mediated immune responses across the lifespan.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Poluentes Ambientais/imunologia , Influenza Humana/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transcriptoma/imunologia , Adulto , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Criança , Desenvolvimento Infantil , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/sangue , Influenza Humana/virologia , Ligantes , Masculino , Camundongos , Dinâmica Mitocondrial/imunologia , RNA-Seq
17.
Immunohorizons ; 3(6): 219-235, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31356168

RESUMO

Activation of the ligand inducible aryl hydrocarbon receptor (AhR) during primary influenza A virus infection diminishes host responses by negatively regulating the ability of dendritic cells (DC) to prime naive CD8+ T cells, which reduces the generation of CTL. However, AhR-regulated genes and signaling pathways in DCs are not fully known. In this study, we used unbiased gene expression profiling to identify differentially expressed genes and signaling pathways in DCs that are modulated by AhR activation in vivo. Using the prototype AhR agonist TCDD, we identified the lectin receptor Cd209a (DC-SIGN) and chemokine Ccl17 as novel AhR target genes. We further show the percentage of DCs expressing CD209a on their surface was significantly decreased by AhR activation during infection. Whereas influenza A virus infection increased CCL17 protein levels in the lung and lung-draining lymph nodes, this was significantly reduced following AhR activation. Targeted excision of AhR in the hematopoietic compartment confirmed AhR is required for downregulation of CCL17 and CD209a. Loss of AhR's functional DNA-binding domain demonstrates that AhR activation alone is necessary but not sufficient to drive downregulation. AhR activation induced similar changes in gene expression in human monocyte-derived DCs. Analysis of the murine and human upstream regulatory regions of Cd209a and Ccl17 revealed a suite of potential transcription factor partners for AhR, which may coregulate these genes in vivo. This study highlights the breadth of AhR-regulated pathways within DCs, and that AhR likely interacts with other transcription factors to modulate DC functions during infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Quimiocina CCL17/metabolismo , Citotoxicidade Imunológica , Genoma , Evasão da Resposta Imune , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Transcriptoma
18.
Cell Rep ; 27(1): 238-254.e6, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943405

RESUMO

The NADPH-dependent oxidase NOX2 is an important effector of immune cell function, and its activity has been linked to oncogenic signaling. Here, we describe a role for NOX2 in leukemia-initiating stem cell populations (LSCs). In a murine model of leukemia, suppression of NOX2 impaired core metabolism, attenuated disease development, and depleted functionally defined LSCs. Transcriptional analysis of purified LSCs revealed that deficiency of NOX2 collapses the self-renewal program and activates inflammatory and myeloid-differentiation-associated programs. Downstream of NOX2, we identified the forkhead transcription factor FOXC1 as a mediator of the phenotype. Notably, suppression of NOX2 or FOXC1 led to marked differentiation of leukemic blasts. In xenotransplantation models of primary human myeloid leukemia, suppression of either NOX2 or FOXC1 significantly attenuated disease development. Collectively, these findings position NOX2 as a critical regulator of malignant hematopoiesis and highlight the clinical potential of inhibiting NOX2 as a means to target LSCs.


Assuntos
Autorrenovação Celular , Leucemia/sangue , Leucopoese , Células Progenitoras Mieloides/metabolismo , NADPH Oxidase 2/metabolismo , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Leucemia/genética , Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/patologia , NADPH Oxidase 2/genética
19.
Gut ; 68(7): 1245-1258, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30228219

RESUMO

OBJECTIVE: Here, we evaluate the contribution of AT-rich interaction domain-containing protein 1A (ARID1A), the most frequently mutated member of the SWItch/sucrose non-fermentable (SWI/SNF) complex, in pancreatic homeostasis and pancreatic ductal adenocarcinoma (PDAC) pathogenesis using mouse models. DESIGN: Mice with a targeted deletion of Arid1a in the pancreas by itself and in the context of two common genetic alterations in PDAC, Kras and p53, were followed longitudinally. Pancreases were examined and analysed for proliferation, response to injury and tumourigenesis. Cancer cell lines derived from these models were analysed for clonogenic, migratory, invasive and transcriptomic changes. RESULTS: Arid1a deletion in the pancreas results in progressive acinar-to-ductal metaplasia (ADM), loss of acinar mass, diminished acinar regeneration in response to injury and ductal cell expansion. Mutant Kras cooperates with homozygous deletion of Arid1a, leading to intraductal papillary mucinous neoplasm (IPMN). Arid1a loss in the context of mutant Kras and p53 leads to shorter tumour latency, with the resulting tumours being poorly differentiated. Cancer cell lines derived from Arid1a-mutant tumours are more mesenchymal, migratory, invasive and capable of anchorage-independent growth; gene expression analysis showed activation of epithelial-mesenchymal transition (EMT) and stem cell identity pathways that are partially dependent on Arid1a loss for dysregulation. CONCLUSIONS: ARID1A plays a key role in pancreatic acinar homeostasis and response to injury. Furthermore, ARID1A restrains oncogenic KRAS-driven formation of premalignant proliferative IPMN. Arid1a-deficient PDACs are poorly differentiated and have mesenchymal features conferring migratory/invasive and stem-like properties.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Acinares/patologia , Células Acinares/fisiologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Homeostase , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição
20.
Methods ; 155: 68-76, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576707

RESUMO

Nonsense-mediated mRNA decay (NMD) is a cellular mRNA degradation mechanism that inhibits the expression of aberrant mRNAs harboring premature termination codons (PTCs). Recent progress in transcriptome-wide sequencing techniques has revealed that NMD also degrades approximately 5-30% of non-mutated cellular mRNAs in a way that can be regulated in response to various cellular signals. In mammals, NMD is governed by the central NMD factor UPF1, which is activated by phosphorylation after translation terminates at a nonsense codon that triggers NMD. We have found that immunoprecipitation using an antibody that is specific for phosphorylated UPF1 is a useful tool to define not only cellular NMD targets but also the nature of NMD decay intermediates and, thus, the process of NMD. To this end, we describe here a detailed protocol for what we call "NMD degradome sequencing" using high-throughput technology.


Assuntos
DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Códon sem Sentido , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Humanos , Imunoprecipitação/métodos , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , RNA Helicases/genética , RNA Helicases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...