Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hum Genomics ; 17(1): 92, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803336

RESUMO

BACKGROUND: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Humanos , Masculino , Recém-Nascido , Feminino , Síndrome de Down/genética , Epigenômica , Metilação de DNA/genética , Epigênese Genética , Cardiopatias Congênitas/genética , Ilhas de CpG/genética , Cromatina
2.
medRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205408

RESUMO

Background: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS) but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. Methods: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: 1) 45 DS-CHD (27 female, 18 male) and 2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD vs DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS vs typical development (TD) WGBS NDBS samples. Results: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3,938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS vs TD samples. Conclusions: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.

3.
Nat Commun ; 13(1): 6077, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241624

RESUMO

Aberrant DNA methylation constitutes a key feature of pediatric acute lymphoblastic leukemia at diagnosis, however its role as a predisposing or early contributor to leukemia development remains unknown. Here, we evaluate DNA methylation at birth in 41 leukemia-discordant monozygotic twin pairs using the Illumina EPIC array on archived neonatal blood spots to identify epigenetic variation associated with development of pediatric acute lymphoblastic leukemia, independent of genetic influence. Through conditional logistic regression we identify 240 significant probes and 10 regions associated with the discordant onset of leukemia. We identify a significant negative coefficient bias, indicating DNA hypomethylation in cases, across the array and enhanced in open sea, shelf/shore, and gene body regions compared to promoter and CpG island regions. Here, we show an association between global DNA hypomethylation and future development of pediatric acute lymphoblastic leukemia across disease-discordant genetically identical twins, implying DNA hypomethylation may contribute more generally to leukemia risk.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Gêmeos Monozigóticos , Criança , Ilhas de CpG/genética , DNA , Metilação de DNA , Epigênese Genética , Humanos , Recém-Nascido , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Gêmeos Monozigóticos/genética
4.
PLoS Genet ; 18(9): e1010388, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070312

RESUMO

BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. PA has at least a 50% higher incidence in populations of European ancestry compared to other ancestral groups, which may be due in part to genetic differences. METHODS: We first compared the global proportions of European, African, and Amerindian ancestries in 301 PA cases and 1185 controls of self-identified Latino ethnicity from the California Biobank. We then conducted admixture mapping analysis to assess PA risk with local ancestry. RESULTS: We found PA cases had a significantly higher proportion of global European ancestry than controls (case median = 0.55, control median = 0.51, P value = 3.5x10-3). Admixture mapping identified 13 SNPs in the 6q14.3 region (SNX14) contributing to risk, as well as three other peaks approaching significance on chromosomes 7, 10 and 13. Downstream fine mapping in these regions revealed several SNPs potentially contributing to childhood PA risk. CONCLUSIONS: There is a significant difference in genomic ancestry associated with Latino PA risk and several genomic loci potentially mediating this risk.


Assuntos
Astrocitoma , Estudo de Associação Genômica Ampla , Astrocitoma/genética , Criança , Mapeamento Cromossômico , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
5.
Aging Cell ; 21(7): e13652, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661546

RESUMO

Accelerated aging is a hallmark of Down syndrome (DS), with adults experiencing early-onset Alzheimer's disease and premature aging of the skin, hair, and immune and endocrine systems. Accelerated epigenetic aging has been found in the blood and brain tissue of adults with DS but when premature aging in DS begins remains unknown. We investigated whether accelerated aging in DS is already detectable in blood at birth. We assessed the association between age acceleration and DS using five epigenetic clocks in 346 newborns with DS and 567 newborns without DS using Illumina MethylationEPIC DNA methylation array data. We compared two epigenetic aging clocks (DNAmSkinBloodClock and pan-tissue DNAmAge) and three epigenetic gestational age clocks (Haftorn, Knight, and Bohlin) between DS and non-DS newborns using linear regression adjusting for observed age, sex, batch, deconvoluted blood cell proportions, and genetic ancestry. Targeted sequencing of GATA1 was performed in a subset of 184 newborns with DS to identify somatic mutations associated with transient abnormal myelopoiesis. DS was significantly associated with increased DNAmSkinBloodClock (effect estimate = 0.2442, p < 0.0001), with an epigenetic age acceleration of 244 days in newborns with DS after adjusting for potential confounding factors (95% confidence interval: 196-292 days). We also found evidence of epigenetic age acceleration associated with somatic GATA1 mutations among newborns with DS (p = 0.015). DS was not associated with epigenetic gestational age acceleration. We demonstrate that accelerated epigenetic aging in the blood of DS patients begins prenatally, with implications for the pathophysiology of immunosenescence and other aging-related traits in DS.


Assuntos
Senilidade Prematura , Síndrome de Down , Adulto , Envelhecimento/genética , Senilidade Prematura/genética , Metilação de DNA/genética , Síndrome de Down/genética , Epigênese Genética , Epigenômica , Humanos , Recém-Nascido
6.
Blood Adv ; 6(12): 3756-3766, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35500222

RESUMO

Acute lymphoblastic leukemia (ALL) in children is associated with a distinct neonatal cytokine profile. The basis of this neonatal immune phenotype is unknown but potentially related to maternal-fetal immune receptor interactions. We conducted a case-control study of 226 case child-mother pairs and 404 control child-mother pairs to evaluate the role of interaction between HLA genotypes in the offspring and maternal killer immunoglobulin-like receptor (KIR) genotypes in the etiology of childhood ALL, while considering potential mediation by neonatal cytokines and the immune-modulating enzyme arginase-II (ARG-II). We observed different associations between offspring HLA-maternal KIR activating profiles and the risk of ALL in different predicted genetic ancestry groups. For instance, in Latino subjects who experience the highest risk of childhood leukemia, activating profiles were significantly associated with a lower risk of childhood ALL (odds ratio [OR] = 0.59; 95% confidence interval [CI], 0.49-0.71) and a higher level of ARG-II at birth (coefficient = 0.13; 95% CI, 0.04-0.22). HLA-KIR activating profiles were also associated with a lower risk of ALL in non-Latino Asians (OR = 0.63; 95% CI, 0.38-1.01), although they had a lower tumor necrosis factor-α level (coefficient = -0.27; 95% CI, -0.49 to -0.06). Among non-Latino White subjects, no significant association was observed between offspring HLA-maternal KIR interaction and ALL risk or cytokine levels. The current study reports the association between offspring HLA-maternal KIR interaction and the development of childhood ALL with variation by predicted genetic ancestry. We also observed some associations between activating profiles and immune factors related to cytokine control; however, cytokines did not demonstrate causal mediation of the activating profiles on ALL risk.


Assuntos
Células Matadoras Naturais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Estudos de Casos e Controles , Criança , Citocinas , Antígenos HLA , Humanos , Imunoglobulinas , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores KIR/genética
7.
Neurooncol Adv ; 4(1): vdac045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571988

RESUMO

Background: Childhood glioblastoma multiforme (GBM) is a highly aggressive disease with low survival, and its etiology, especially concerning germline genetic risk, is poorly understood. Mitochondria play a key role in putative tumorigenic processes relating to cellular oxidative metabolism, and mitochondrial DNA variants were not previously assessed for association with pediatric brain tumor risk. Methods: We conducted an analysis of 675 mitochondrial DNA variants in 90 childhood GBM cases and 2789 controls to identify enrichment of mitochondrial variant associated with GBM risk. We also performed this analysis for other glioma subtypes including pilocytic astrocytoma. Nuclear-encoded mitochondrial gene variants were also analyzed. Results: We identified m1555 A>G was significantly associated with GBM risk (adjusted OR 29.30, 95% CI 5.25-163.4, P-value 9.5 X 10-4). No association was detected for other subtypes. Haplotype analysis further supported the independent risk contributed by m1555 G>A, instead of a haplogroup joint effect. Nuclear-encoded mitochondrial gene variants identified significant associations in European (rs62036057 in WWOX, adjusted OR = 2.99, 95% CI 1.88-4.75, P-value = 3.42 X 10-6) and Hispanic (rs111709726 in EFHD1, adjusted OR = 3.57, 95% CI 1.99-6.40, P-value = 1.41 X 10-6) populations in ethnicity-stratified analyses. Conclusion: We report for the first time a potential role played by a functional mitochondrial ribosomal RNA variant in childhood GBM risk, and a potential role for both mitochondrial and nuclear-mitochondrial DNA polymorphisms in GBM tumorigenesis. These data implicate cellular oxidative metabolic capacity as a contributor to the etiology of pediatric glioblastoma.

9.
Biotechniques ; 72(4): 121-133, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255733

RESUMO

DNA methylation is a labile modification associated with gene expression control and environmental adaptations. High throughput, scalable and quantitative assessments of specific DNA methylation modifications in complex genomic regions for use in large population studies are needed. The performance of Droplet Digital™ PCR (ddPCR™) was investigated for DNA methylation detection against next-generation bisulfite sequencing (NGS) to demonstrate the ability of ddPCR to detect and validate DNA methylation levels and complex patterns among neighboring CpGs in regions associated with prenatal tobacco exposure. While both techniques are reproducible, ddPCR demonstrates a unique advantage for high-throughput DNA methylation analysis in large-scale population studies and provides the specificity to accurately measure DNA methylation of target CpGs in complex regions.


Assuntos
Metilação de DNA , Nicotiana , Ilhas de CpG , Metilação de DNA/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase/métodos
10.
Nat Commun ; 12(1): 821, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547282

RESUMO

Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Síndrome de Down/genética , Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Estudos de Casos e Controles , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ilhas de CpG , Metilação de DNA , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Feto , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Genoma Humano , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/patologia , Humanos , Recém-Nascido , Fígado/metabolismo , Fígado/patologia , Masculino , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/metabolismo
11.
Cancer Discov ; 7(11): 1284-1305, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893800

RESUMO

Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Roles for noncoding cis-regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profiles, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specific aspects of malignancy. Superenhancer profiling identified ZNF395 as a ccRCC-specific and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivoVHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α-HIF1ß heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter-enhancer interactions. Subtype-specific driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression.Significance: Comprehensive epigenomic profiling of ccRCC establishes a compendium of somatically altered cis-regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL, a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specific promoter-enhancer complexes. Cancer Discov; 7(11); 1284-305. ©2017 AACR.See related commentary by Ricketts and Linehan, p. 1221This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Fatores de Transcrição de p300-CBP/genética , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cromatina , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Oncogenes/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
12.
Cancer Discov ; 7(10): 1116-1135, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28667006

RESUMO

Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analyzed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined 4 CCA clusters-fluke-positive CCAs (clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations; conversely, fluke-negative CCAs (clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3' untranslated region deletion as a mechanism of FGFR2 upregulation. Integration of noncoding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores-mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics, and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.Significance: Integrated whole-genome and epigenomic analysis of CCA on an international scale identifies new CCA driver genes, noncoding promoter mutations, and structural variants. CCA molecular landscapes differ radically by etiology, underscoring how distinct cancer subtypes in the same organ may arise through different extrinsic and intrinsic carcinogenic processes. Cancer Discov; 7(10); 1116-35. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Receptor ErbB-2/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/genética
13.
Genome Res ; 27(9): 1475-1486, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739859

RESUMO

Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene-this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.


Assuntos
Aflatoxina B1/toxicidade , Carcinógenos/toxicidade , Análise Mutacional de DNA , Mutação/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , China , Antígenos de Superfície da Hepatite B/genética , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Mutação/genética
14.
Am J Cancer Res ; 7(3): 484-502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401006

RESUMO

AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A. In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A. Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

15.
Sci Transl Med ; 9(378)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228601

RESUMO

Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
16.
Gut ; 65(12): 1960-1972, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26338826

RESUMO

BACKGROUND: GI stromal tumours (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. OBJECTIVES: We sought to identify genetic alterations associated with high-risk GIST, explore their molecular consequences, and test their utility as prognostic markers. DESIGNS: Exome sequencing of 18 GISTs was performed (9 patients with high-risk/metastatic and 5 patients with low/intermediate-risk), corresponding to 11 primary and 7 metastatic tumours. Candidate alterations were validated by prevalence screening in an independent patient cohort (n=120). Functional consequences of SETD2 mutations were investigated in primary tissues and cell lines. Transcriptomic profiles for 8 GISTs (4 SETD2 mutated, 4 SETD2 wild type) and DNA methylation profiles for 22 GISTs (10 SETD2 mutated, 12 SETD2 wild type) were analysed. Statistical associations between molecular, clinicopathological factors, and relapse-free survival were determined. RESULTS: High-risk GISTs harboured increased numbers of somatic mutations compared with low-risk GISTs (25.2 mutations/high-risk cases vs 6.8 mutations/low-risk cases; two sample t test p=3.1×10-5). Somatic alterations in the SETD2 histone modifier gene occurred in 3 out of 9 high-risk/metastatic cases but no low/intermediate-risk cases. Prevalence screening identified additional SETD2 mutations in 7 out of 80 high-risk/metastatic cases but no low/intermediate-risk cases (n=29). Combined, the frequency of SETD2 mutations was 11.2% (10/89) and 0% (0/34) in high-risk and low-risk GISTs respectively. SETD2 mutant GISTs exhibited decreased H3K36me3 expression while SETD2 silencing promoted DNA damage in GIST-T1 cells. In gastric GISTs, SETD2 mutations were associated with overexpression of HOXC cluster genes and a DNA methylation signature of hypomethylated heterochromatin. Gastric GISTs with SETD2 mutations, or GISTs with hypomethylated heterochromatin, showed significantly shorter relapse-free survival on univariate analysis (log rank p=4.1×10-5). CONCLUSIONS: Our data suggest that SETD2 is a novel GIST tumour suppressor gene associated with disease progression. Assessing SETD2 genetic status and SETD2-associated epigenomic phenotypes may guide risk stratification and provide insights into mechanisms of GIST clinical aggressiveness.


Assuntos
Biomarcadores Tumorais/genética , Tumores do Estroma Gastrointestinal/genética , Histona-Lisina N-Metiltransferase/genética , Mutação de Sentido Incorreto , Estudos de Casos e Controles , Códon sem Sentido/genética , Metilação de DNA/genética , Exoma/genética , Tumores do Estroma Gastrointestinal/epidemiologia , Tumores do Estroma Gastrointestinal/patologia , Histonas/genética , Humanos , Mutação de Sentido Incorreto/genética , Invasividade Neoplásica , Fenótipo , Prevalência , Prognóstico , Índice de Gravidade de Doença , Singapura/epidemiologia
17.
Anticancer Res ; 35(12): 6639-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26637880

RESUMO

BACKGROUND/AIM: Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a rare autosomal dominant disorder characterized by fumarate hydratase (FH) gene mutation. It is associated with the development of very aggressive kidney tumors, characterized by early onset and high metastatic potential, and has no effective therapy. The aim of the study was to establish a new preclinical platform for investigating morphogenetic and metabolic features, and alternative therapy of metastatic hereditary papillary renal cell carcinoma type 2 (PRCC2). MATERIALS AND METHODS: Fresh cells were collected from pleural fluid of a patient with metastatic hereditary PRCC2. Morphogenetic and functional characteristics were evaluated via microscopy, FH gene sequencing analysis, real-time polymerase chaine reaction and enzymatic activity measurement. We performed bioenergetic analysis, gene-expression profiling, and cell viability assay with 19 anti-neoplastic drugs. RESULTS: We established a new in vitro model of hereditary PRCC2 - the NCCFH1 cell line. The cell line possesses a c.1162 delA - p.Thr375fs frameshift mutation in the FH gene. Our findings indicate severe attenuation of oxidative phosphorylation and glucose-dependent growth of NCCFH1 cells that is consistent with the Warburg effect. Furthermore, gene-expression profiling identified that the most prominent molecular features reflected a high level of apoptosis, cell adhesion, and cell signaling. Drug screening revealed a marked sensitivity of FH(-/-) cells to mitoxantrone, epirubicin, topotecan and a high sensitivity to bortezomib. CONCLUSION: We demonstrated that the NCCFH1 cell line is a very interesting preclinical model for studying the metabolic features and testing new therapies for hereditary PRCC2, while bortezomib may be a potential efficient therapeutic option.


Assuntos
Carcinoma de Células Renais/genética , Fumarato Hidratase/metabolismo , Adolescente , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Masculino
18.
Nat Genet ; 47(11): 1341-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437033

RESUMO

Breast fibroepithelial tumors comprise a heterogeneous spectrum of pathological entities, from benign fibroadenomas to malignant phyllodes tumors. Although MED12 mutations have been frequently found in fibroadenomas and phyllodes tumors, the landscapes of genetic alterations across the fibroepithelial tumor spectrum remain unclear. Here, by performing exome sequencing of 22 phyllodes tumors followed by targeted sequencing of 100 breast fibroepithelial tumors, we observed three distinct somatic mutation patterns. First, we frequently observed MED12 and RARA mutations in both fibroadenomas and phyllodes tumors, emphasizing the importance of these mutations in fibroepithelial tumorigenesis. Second, phyllodes tumors exhibited mutations in FLNA, SETD2 and KMT2D, suggesting a role in driving phyllodes tumor development. Third, borderline and malignant phyllodes tumors harbored additional mutations in cancer-associated genes. RARA mutations exhibited clustering in the portion of the gene encoding the ligand-binding domain, functionally suppressed RARA-mediated transcriptional activation and enhanced RARA interactions with transcriptional co-repressors. This study provides insights into the molecular pathogenesis of breast fibroepithelial tumors, with potential clinical implications.


Assuntos
Neoplasias da Mama/genética , Fibroadenoma/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Mutação , Tumor Filoide/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exoma/genética , Feminino , Fibroadenoma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Complexo Mediador/genética , Complexo Mediador/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Tumor Filoide/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Adulto Jovem
19.
Genome Med ; 7(1): 38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26015808

RESUMO

BACKGROUND: Aristolochic acid (AA) is a natural compound found in many plants of the Aristolochia genus, and these plants are widely used in traditional medicines for numerous conditions and for weight loss. Previous work has connected AA-mutagenesis to upper-tract urothelial cell carcinomas and hepatocellular carcinomas. We hypothesize that AA may also contribute to bladder cancer. METHODS: Here, we investigated the involvement of AA-mutagenesis in bladder cancer by sequencing bladder tumor genomes from two patients with known exposure to AA. After detecting strong mutational signatures of AA exposure in these tumors, we exome-sequenced and analyzed an additional 11 bladder tumors and analyzed publicly available somatic mutation data from a further 336 bladder tumors. RESULTS: The somatic mutations in the bladder tumors from the two patients with known AA exposure showed overwhelming AA signatures. We also detected evidence of AA exposure in 1 out of 11 bladder tumors from Singapore and in 3 out of 99 bladder tumors from China. In addition, 1 out of 194 bladder tumors from North America showed a pattern of mutations that might have resulted from exposure to an unknown mutagen with a heretofore undescribed pattern of A > T mutations. Besides the signature of AA exposure, the bladder tumors also showed the CpG > TpG and activated-APOBEC signatures, which have been previously reported in bladder cancer. CONCLUSIONS: This study demonstrates the utility of inferring mutagenic exposures from somatic mutation spectra. Moreover, AA exposure in bladder cancer appears to be more pervasive in the East, where traditional herbal medicine is more widely used. More broadly, our results suggest that AA exposure is more extensive than previously thought both in terms of populations at risk and in terms of types of cancers involved. This appears to be an important public health issue that should be addressed by further investigation and by primary prevention through regulation and education. In addition to opportunities for primary prevention, knowledge of AA exposure would provide opportunities for secondary prevention in the form of intensified screening of patients with known or suspected AA exposure.

20.
Nat Genet ; 46(8): 877-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038752

RESUMO

Fibroadenomas are the most common breast tumors in women under 30 (refs. 1,2). Exome sequencing of eight fibroadenomas with matching whole-blood samples revealed recurrent somatic mutations solely in MED12, which encodes a Mediator complex subunit. Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring in codon 44. Using laser capture microdissection, we show that MED12 fibroadenoma mutations are present in stromal but not epithelial mammary cells. Expression profiling of MED12-mutated and wild-type fibroadenomas revealed that MED12 mutations are associated with dysregulated estrogen signaling and extracellular matrix organization. The fibroadenoma MED12 mutation spectrum is nearly identical to that of previously reported MED12 lesions in uterine leiomyoma but not those of other tumors. Benign tumors of the breast and uterus, both of which are key target tissues of estrogen, may thus share a common genetic basis underpinned by highly frequent and specific MED12 mutations.


Assuntos
Neoplasias da Mama/genética , Exoma , Fibroadenoma/genética , Complexo Mediador/genética , Mutação , Recidiva Local de Neoplasia/genética , Adulto , Códon , Estrogênios/genética , Éxons , Matriz Extracelular/genética , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...