Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1834(1): 46-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22999981

RESUMO

BACKGROUND: Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. METHODS: We have characterized inhibitors of B. anthracis dihydrofolate reductase by measuring the K(i) and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. RESULTS: We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. CONCLUSIONS: These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Antagonistas do Ácido Fólico/química , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química , Antraz/tratamento farmacológico , Antraz/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Antagonistas do Ácido Fólico/uso terapêutico , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
ChemMedChem ; 7(11): 1974-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930550

RESUMO

(±)-6-Alkyl-2,4-diaminopyrimidine-based inhibitors of bacterial dihydrofolate reductase (DHFR) have been prepared and evaluated for biological potency against Bacillus anthracis and Staphylococcus aureus. Biological studies revealed attenuated activity relative to earlier structures lacking substitution at C6 of the diaminopyrimidine moiety, though minimum inhibitory concentration (MIC) values are in the 0.125-8 µg mL(-1) range for both organisms. This effect was rationalized from three- dimensional X-ray structure studies that indicate the presence of a side pocket containing two water molecules adjacent to the main binding pocket. Because of the hydrophobic nature of the substitutions at C6, the main interactions are with protein residues Leu 20 and Leu 28. These interactions lead to a minor conformational change in the protein, which opens the pocket containing these water molecules such that it becomes continuous with the main binding pocket. These water molecules are reported to play a critical role in the catalytic reaction, highlighting a new area for inhibitor expansion within the limited architectural variation at the catalytic site of bacterial DHFR.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Pirimidinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Antraz/tratamento farmacológico , Antraz/microbiologia , Antibacterianos/química , Bacillus anthracis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Antagonistas do Ácido Fólico/química , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Pirimidinas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia
3.
Biotechniques ; Suppl: 42-6, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11906007

RESUMO

Structural proteomics is an emerging paradigm that is gaining importance in the post-genomic era as a valuable discipline to process the protein target information being deciphered. The field plays a crucial role in assigning function to sequenced proteins, defining pathways in which the targets are involved, and understanding structure-function relationships of the protein targets. A key component of this research sector is accessing the three-dimensional structures of protein targets by both experimental and theoretical methods. This then leads to the question of how to store, retrieve, and manipulate vast amounts of sequence (1-D) and structural (3-D) information in a relational format so that extensive data analysis can be achieved. We at SBI have addressed both of these fundamental requirements of structural proteomics. We have developed an extensive collection of three-dimensional protein structures from sequence data and have implemented a relational architecture for data management. In this article we will discuss our approaches to structural proteomics and the tools that life science researchers can use in their discovery efforts.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteoma/análise , Proteoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...