Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nitric Oxide ; 128: 12-24, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973674

RESUMO

Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine ß-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 µM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Catequina/análogos & derivados , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatos , Piridoxal , Relação Estrutura-Atividade
2.
Cells ; 10(4)2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920220

RESUMO

Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , Síndrome de Cockayne/metabolismo , Dano ao DNA , DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional
3.
J Med Chem ; 64(9): 6221-6240, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33856792

RESUMO

The enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is one of the more recently identified mammalian sources of H2S. A recent study identified several novel 3-MST inhibitors with micromolar potency. Among those, (2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one) or HMPSNE was found to be the most potent and selective. We now took the central core of this compound and modified the pyrimidone and the arylketone sides independently. A 63-compound library was synthesized; compounds were tested for H2S generation from recombinant 3-MST in vitro. Active compounds were subsequently tested to elucidate their potency and selectivity. Computer modeling studies have delineated some of the key structural features necessary for binding to the 3-MST's active site. Six novel 3-MST inhibitors were tested in cell-based assays: they exerted inhibitory effects in murine MC38 and CT26 colon cancer cell proliferation; the antiproliferative effect of the compound with the highest potency and best cell-based activity (1b) was also confirmed on the growth of MC38 tumors in mice.


Assuntos
Neoplasias do Colo/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Sulfurtransferases/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Sulfurtransferases/química , Sulfurtransferases/metabolismo
4.
Molecules ; 25(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824311

RESUMO

Cystathionine ß-synthase (CBS) is a key enzyme in the production of the signaling molecule hydrogen sulfide, deregulation of which is known to contribute to a range of serious pathological states. Involvement of hydrogen sulfide in pathways of paramount importance for cellular homeostasis renders CBS a promising drug target. An in-house focused library of heteroaromatic compounds was screened for CBS modulators by the methylene blue assay and a pyrazolopyridine derivative with a promising CBS inhibitory potential was discovered. The compound activity was readily comparable to the most potent CBS inhibitor currently known, aminoacetic acid, while a promising specificity over the related cystathionine γ-lyase was identified. To rule out any possibility that the inhibitor may bind the enzyme regulatory domain due to its high structural similarity with cofactor s-adenosylmethionine, differential scanning fluorimetry was employed. A sub-scaffold search guided follow-up screening of related compounds, providing preliminary structure-activity relationships with respect to requisites for efficient CBS inhibition by this group of heterocycles. Subsequently, a hypothesis regarding the exact binding mode of the inhibitor was devised on the basis of the available structure-activity relationships (SAR) and a deep neural networks analysis and further supported by induced-fit docking calculations.


Assuntos
Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/análise , Pirazóis/farmacologia , Piridinas/farmacologia , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Redes Neurais de Computação , Pirazóis/química , Piridinas/química , S-Adenosilmetionina/química , Relação Estrutura-Atividade
5.
Curr Pharm Des ; 26(8): 838-866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039675

RESUMO

In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded. Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships between the studied guanylhydrazone analogues and their potential enzyme target.


Assuntos
Mitoguazona/análogos & derivados , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Mitoguazona/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
6.
Cancers (Basel) ; 12(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878315

RESUMO

The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.

7.
Pharmacol Ther ; 203: 107395, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374225

RESUMO

A major challenge in cancer treatment is predicting the clinical response to anti-cancer drugs on a personalized basis. The success of such a task largely depends on the ability to develop computational resources that integrate big "omic" data into effective drug-response models. Machine learning is both an expanding and an evolving computational field that holds promise to cover such needs. Here we provide a focused overview of: 1) the various supervised and unsupervised algorithms used specifically in drug response prediction applications, 2) the strategies employed to develop these algorithms into applicable models, 3) data resources that are fed into these frameworks and 4) pitfalls and challenges to maximize model performance. In this context we also describe a novel in silico screening process, based on Association Rule Mining, for identifying genes as candidate drivers of drug response and compare it with relevant data mining frameworks, for which we generated a web application freely available at: https://compbio.nyumc.org/drugs/. This pipeline explores with high efficiency large sample-spaces, while is able to detect low frequency events and evaluate statistical significance even in the multidimensional space, presenting the results in the form of easily interpretable rules. We conclude with future prospects and challenges of applying machine learning based drug response prediction in precision medicine.


Assuntos
Mineração de Dados , Aprendizado de Máquina , Neoplasias/tratamento farmacológico , Animais , Simulação por Computador , Humanos , Resultado do Tratamento
8.
Medchemcomm ; 10(6): 991-1006, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303998

RESUMO

Infections with Flaviviridae viruses, such as hepatitis C virus (HCV) and dengue virus (DENV) pose global health threats. Infected individuals are at risk of developing chronic liver failure or haemorrhagic fever respectively, often with a fatal outcome if left untreated. Diseases caused by tropical parasites of the Trypanosoma species, T. brucei and T. cruzi, constitute significant socioeconomic burden in sub-Saharan Africa and continental Latin America, yet drug development is under-funded. Anti-HCV chemotherapy is associated with severe side effects and high cost, while dengue has no clinically approved therapy and antiparasitic drugs are outdated and difficult to administer. Moreover, drug resistance is an emerging concern. Consequently, the need for new revolutionary chemotherapies is urgent. By utilizing a molecular framework combination approach, we combined two distinct chemical entities with proven antiviral and trypanocidal activity into a novel hybrid scaffold attached by an acetohydroxamic acid group (CH2CONHOH), aiming at derivatives with dual activity. The novel spiro-carbocyclic substituted hydantoin analogues were rationally designed, synthesized and evaluated for their potency against three HCV genotypes (1b, 3a, 4a), DENV and two Trypanosoma species (T. brucei, T. cruzi). They exhibited significant EC50 values and remarkable selectivity indices. Several modifications were undertaken to further explore the structure activity relationships (SARs) and confirm the pivotal role of the acetohydroxamic acid metal binding group.

9.
Eur J Med Chem ; 176: 393-409, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125894

RESUMO

Novel substituted purine isosters, were designed and synthesized as potential inhibitors of the Epidermal Growth Factor Receptor (EGFR). The compounds were rationally designed through bioisosteric replacement of the central quinazoline core of lapatinib, an approved drug that inhibits both EGFR and HER2, another important member of this family of receptors. The new target molecules were evaluated as inhibitors of receptor phosphorylation at the cellular level, for their direct inhibitory action on the intracellular receptor kinase domain and for their cytotoxicity against the non-small cell lung cancer cell line A549 and breast cancer HCC1954, cell lines which are associated with overexpression of EGFR and HER2, respectively. The most potent derivatives were further studied for their cellular uptake levels and in vivo pharmacokinetic properties. One compound (23) displayed a noteworthy pharmacokinetic profile, and higher intracellular accumulation in comparison to lapatinib in the A549 cells, possibly due to its higher lipophilicity. This lead compound (23) was assessed for its efficacy in an EGFR positive xenograft model, where it successfully inhibited tumor growth, with a similar efficacy with that of lapatinib and with minimal phenotypic toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Lapatinib/análogos & derivados , Lapatinib/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Domínio Catalítico , Linhagem Celular Tumoral , Feminino , Humanos , Lapatinib/síntese química , Lapatinib/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Purinas/síntese química , Purinas/química , Purinas/farmacocinética , Receptor ErbB-2/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-30910902

RESUMO

The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). The disease is fatal if it remains untreated, whereas most drug treatments are inadequate due to high toxicity, difficulties in administration, and low central nervous system penetration. T. brucei glycogen synthase kinase 3 short (TbGSK3s) is essential for parasite survival and thus represents a potential drug target that could be exploited for HAT treatment. Indirubins, effective leishmanicidals, provide a versatile scaffold for the development of potent GSK3 inhibitors. Herein, we report on the screening of 69 indirubin analogues against T. brucei bloodstream forms. Of these, 32 compounds had potent antitrypanosomal activity (half-maximal effective concentration = 0.050 to 3.2 µM) and good selectivity for the analogues over human HepG2 cells (range, 7.4- to over 641-fold). The majority of analogues were potent inhibitors of TbGSK3s, and correlation studies for an indirubin subset, namely, the 6-bromosubstituted 3'-oxime bearing an extra bulky substituent on the 3' oxime [(6-BIO-3'-bulky)-substituted indirubins], revealed a positive correlation between kinase inhibition and antitrypanosomal activity. Insights into this indirubin-TbGSK3s interaction were provided by structure-activity relationship studies. Comparison between 6-BIO-3'-bulky-substituted indirubin-treated parasites and parasites silenced for TbGSK3s by RNA interference suggested that the above-described compounds may target TbGSK3s in vivo To further understand the molecular basis of the growth arrest brought about by the inhibition or ablation of TbGSK3s, we investigated the intracellular localization of TbGSK3s. TbGSK3s was present in cytoskeletal structures, including the flagellum and basal body area. Overall, these results give insights into the mode of action of 6-BIO-3'-bulky-substituted indirubins that are promising hits for antitrypanosomal drug discovery.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Animais , Linhagem Celular , Indóis/farmacologia , Insetos/parasitologia , Relação Estrutura-Atividade , Tripanossomíase Africana/tratamento farmacológico
11.
Cardiovasc Res ; 115(7): 1228-1243, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843027

RESUMO

AIMS: Glycogen synthase kinase 3 beta (GSK3ß) link with the mitochondrial Permeability Transition Pore (mPTP) in cardioprotection is debated. We investigated the role of GSK3ß in ischaemia (I)/reperfusion (R) injury using pharmacological tools. METHODS AND RESULTS: Infarct size using the GSK3ß inhibitor BIO (6-bromoindirubin-3'-oxime) and several novel analogues (MLS2776-MLS2779) was determined in anaesthetized rabbits and mice. In myocardial tissue GSK3ß inhibition and the specificity of the compounds was tested. The mechanism of protection focused on autophagy-related proteins. GSK3ß localization was determined in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from Langendorff-perfused murine hearts (30'I/10'R or normoxic conditions). Calcium retention capacity (CRC) was determined in mitochondria after administration of the inhibitors in mice and in vitro. The effects of the inhibitors on mitochondrial respiration, reactive oxygen species (ROS) formation, ATP production, or hydrolysis were measured in SSM at baseline. Cyclosporine A (CsA) was co-administered with the inhibitors to address putative additive cardioprotective effects. Rabbits and mice treated with MLS compounds had smaller infarct size compared with control. In rabbits, MLS2776 and MLS2778 possessed greater infarct-sparing effects than BIO. GSK3ß inhibition was confirmed at the 10th min and 2 h of reperfusion, while up-regulation of autophagy-related proteins was evident at late reperfusion. The mitochondrial amount of GSK3ß was similar in normoxic SSM and IFM and was not altered by I/R. The inhibitors did not affect CRC or respiration, ROS and ATP production/hydrolysis at baseline. The co-administration of CsA ensured that cardioprotection was CypD-independent. CONCLUSION: Pharmacological inhibition of GSK3ß attenuates infarct size beyond mPTP inhibition.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estrutura Molecular , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Inibidores de Proteínas Quinases/química , Coelhos , Transdução de Sinais , Relação Estrutura-Atividade
13.
Pharmacol Ther ; 193: 31-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30121319

RESUMO

Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.


Assuntos
Antineoplásicos/uso terapêutico , Senescência Celular , Neoplasias/tratamento farmacológico , Animais , Humanos
14.
Biochem Pharmacol ; 159: 40-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414936

RESUMO

The discipline of drug discovery has greatly benefited by computational tools and in silico algorithms aiming at rationalization of many related processes, from the stage of early hit identification to the preclinical phases of drug candidate validation. The various methodologies referred to as molecular modeling tools span a broad spectrum of applications, from straightforward approaches such as virtual screening of compound libraries to more advanced techniques involving the precise estimation of free energy upon binding of the candidate drug to its macromolecular target. To this end, we report an overview of specific studies where implementation of such sophisticated modeling algorithms has shown to be indispensable for addressing challenging systems and biological questions otherwise difficult to answer. We focus our attention on the emerging field of bromodomain inhibitors. Bromodomains are small modules involved in epigenetic signaling and currently comprise high-priority targets for developing both drug candidates and chemical probes for basic biomedical research. We attempt a critical presentation of selected cases utilizing cutting-edge in silico methodologies, with our main emphasis being on absolute or relative free energy simulations, on implementation of quantum-mechanics level calculations and on characterization of solvent thermodynamics. We discuss the advantages and strengths as well as the drawbacks and weaknesses of computational tools utilized in those works and we attempt to comment on specific issues related to their integration into the regular medicinal chemistry practice. Our conclusion is that while such methods indeed represent highly promising resources for further advancing the discipline, their application is not always trivial.


Assuntos
Química Farmacêutica/métodos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Domínios Proteicos/efeitos dos fármacos , Algoritmos , Simulação por Computador , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Termodinâmica
15.
Methods Mol Biol ; 1896: 119-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30474845

RESUMO

Lipofuscin accumulation is a hallmark of senescence. This nondegradable material aggregates in the cytoplasm of stressed or damaged cells due to metabolic imbalance associated with aging and age-related diseases. Indications of a soluble state of lipofuscin have also been provided, rendering the perspective of monitoring such processes via lipofuscin quantification in liquids intriguing. Therefore, the development of an accurate and reliable method is of paramount importance. Currently available assays are characterized by inherent pitfalls which demote their credibility. We herein describe a simple, highly specific and sensitive protocol for measuring lipofuscin levels in any type of liquid. The current method represents an evolution of a previously described assay, developed for in vitro and in vivo senescent cell recognition that exploits a newly synthesized Sudan Black-B analog (GL13). Analysis of human clinical samples with the modified protocol provided strong evidence of its usefulness for the exposure and surveillance of age-related conditions.


Assuntos
Envelhecimento , Compostos Azo , Biomarcadores/sangue , Senescência Celular , Lipofuscina/sangue , Naftalenos , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Coloração e Rotulagem , Adulto Jovem
16.
Histol Histopathol ; 34(4): 335-352, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30480312

RESUMO

In the era of precision medicine immunohistochemistry (IHC) and immunocytochemistry (ICC) share some of the highlights in personalized treatment. Survival data obtained from clinical trials shape the cut-offs and IHC scoring that serve as recommendations for patient selection both for targeted and conventional therapies. Assessment of Estrogen and Progesterone Receptors along with HER2 status has been among the first approved immunostaining assays revolutionizing breast cancer treatment. Similarly, ALK positivity predicts the efficacy of ALK inhibitors in patients with non-small cell lung cancer (NSCLC). In recent years, Programmed Death Ligand 1 (PD-L1) IHC assays have been approved as companion or complimentary diagnostic tools predicting the response to checkpoint inhibitors. Anti-PD-L1 and anti-PD-1 monoclonal antibodies have inaugurated a new period in the treatment of advanced cancers, but the path to approval of these biomarkers is filled with immunohistochemical challenges. The latter brings to the fore the significance of molecular pathology as a hub between basic and clinical research. Besides, novel markers are translated into routine practice, suggesting that we are at the beginning of a new exciting period. Unraveling the molecular mechanisms involved in cellular homeostasis unfolds biomarkers with greater specificity and sensitivity. The introduction of GL13 (SenTraGor®) for the detection of senescent cells in archival material, the implementation of key players of stress response pathways and the development of compounds detecting common mutant P53 isoforms in dictating oncological treatments are paradigms for precision oncology.


Assuntos
Biomarcadores Tumorais/análise , Imuno-Histoquímica/métodos , Oncologia/métodos , Patologia Molecular/métodos , Medicina de Precisão/métodos , Humanos , Imuno-Histoquímica/tendências , Oncologia/tendências , Patologia Molecular/tendências , Medicina de Precisão/tendências
17.
Future Med Chem ; 10(20): 2411-2430, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30325204

RESUMO

BACKGROUND: Virtual screening is vital for contemporary drug discovery but striking performance fluctuations are commonly encountered, thus hampering error-free use. Results and Methodology: A conceptual framework is suggested for combining screening algorithms characterized by orthogonality (docking-scoring calculations, 3D shape similarity, 2D fingerprint similarity) into a simple, efficient and expansible python-based consensus ranking scheme. An original experimental dataset is created for comparing individual screening methods versus the novel approach. Its utilization leads to identification and phosphoproteomic evaluation of a cell-active DYRK1α inhibitor. CONCLUSION: Consensus ranking considerably stabilizes screening performance at reasonable computational cost, whereas individual screens are heavily dependent on calculation settings. Results indicate that the novel approach, currently available as a free online tool, is highly suitable for prospective screening by nonexperts.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Algoritmos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Consenso , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Quinases Dyrk
19.
Methods Mol Biol ; 1824: 261-277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039412

RESUMO

A number of diverse approaches for efficient screening of compound collections in silico are nowadays available, each with their own methodological background, successes and limitations. Implementation of such virtual screening methods has enabled an impressive acceleration in the search toward the most biologically relevant regions of chemical space and has greatly facilitated the discovery of novel biologically active molecules. It is noteworthy that the range of principles on which the available virtual screening methodologies are based is wide enough for several of these methods to be considered as orthogonal to a good extent. We hereby propose a simple and extensible protocol aiming at integrating the diverse information derived by such virtual screening methods in a consensus manner that can achieve an improvement of the hit rate obtained by individual use of those methods. The protocol can be performed in its basic version as described in this work, but it can also be extended manually by integrating a number of different screening tools and their case-specific variations to further increase the performance of virtual screening in prioritizing the most promising compounds for in vitro evaluations.


Assuntos
Simulação de Acoplamento Molecular/métodos , Preparações Farmacêuticas/química , Avaliação Pré-Clínica de Medicamentos/métodos
20.
Redox Biol ; 16: 169-178, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505920

RESUMO

Natural products are characterized by extreme structural diversity and thus they offer a unique source for the identification of novel anti-tumor agents. Herein, we report that the herbal substance acteoside being isolated by advanced phytochemical methods from Lippia citriodora leaves showed enhanced cytotoxicity against metastatic tumor cells; acted in synergy with various cytotoxic agents and it sensitized chemoresistant cancer cells. Acteoside was not toxic in physiological cellular contexts, while it increased oxidative load, affected the activity of proteostatic modules and suppressed matrix metalloproteinases in tumor cell lines. Intraperitoneal or oral (via drinking water) administration of acteoside in a melanoma mouse model upregulated antioxidant responses in the tumors; yet, only intraperitoneal delivery suppressed tumor growth and induced anti-tumor-reactive immune responses. Mass-spectrometry identification/quantitation analyses revealed that intraperitoneal delivery of acteoside resulted in significantly higher, vs. oral administration, concentration of the compound in the plasma and tumors of treated mice, suggesting that its in vivo anti-tumor effect depends on the route of administration and the achieved concentration in the tumor. Finally, molecular modeling studies and enzymatic activity assays showed that acteoside inhibits protein kinase C. Conclusively, acteoside holds promise as a chemical scaffold for the development of novel anti-tumor agents.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Melanoma Experimental/tratamento farmacológico , Fenóis/farmacologia , Proteína Quinase C/metabolismo , Animais , Antioxidantes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melanoma Experimental/metabolismo , Camundongos , Proteína Quinase C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...