Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(12): 6268-6277, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38450545

RESUMO

Several established procedures are now available to prepare zinc blende CdSe nanoplatelets. While these protocols allow for detailed control over both thickness and lateral dimensions, the chemistry behind their formation is yet to be unraveled. In this work, we discuss the influence of the solvent on the synthesis of nanoplatelets. We confirmed that the presence of double bonds, as is the case for 1-octadecene, plays a key role in the evolution of nanoplatelets, through the isomerization of the alkene, as confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry. Consequently, 1-octadecene can be replaced as a solvent (or solvent mixture), however, only by one that also contains α protons to CC double bonds. We confirm this via synthesis of nanoplatelets in hexadecane spiked with a small amount of 1-octadecene, and in the aromatic solvent 1,2,3,4-tetrahydronaphthalene (tetralin). At the same time, the chemical reaction leading to the formation of nanoplatelets occurs to some extent in saturated solvents. A closer examination revealed that an alternative formation pathway is possible, through interaction of carboxylic acids, such as octanoic acid, with selenium. Next to shedding more light on the synthesis of CdSe nanoplatelets, fundamental understanding of the precursor chemistry paves the way to use optimized solvent admixtures as an additional handle to control the nanoplatelet synthesis, as well as to reduce potential self-polymerization hurdles observed with 1-octadecene.

2.
ACS Omega ; 8(21): 18663-18684, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273589

RESUMO

A novel series of N-acylated ciprofloxacin (CP) conjugates 1-21 were synthesized and screened as potential antimicrobial agents. Conjugates 1 and 2 were 1.25-10-fold more potent than CP toward all Staphylococci (minimal inhibitory concentration 0.05-0.4 µg/mL). Most of the chloro- (3-7), bromo- (8-11), and CF3-alkanoyl (14-16) derivatives expressed higher or comparable activity to CP against selected Gram-positive strains. A few CP analogues (5, 10, and 11) were also more effective toward the chosen clinical Gram-negative rods. Conjugates 5, 10, and 11 considerably influenced the phases of the bacterial growth cycle over 18 h. Additionally, compounds 2, 4-7, 9-12, and 21 exerted stronger tuberculostatic action against three Mycobacterium tuberculosis isolates than the first-line antitubercular drugs. Amides 1, 2, 5, 6, 10, and 11 targeted gyrase and topoisomerase IV at 2.7-10.0 µg/mL, which suggests a mechanism of antibacterial action related to CP. These findings were confirmed by molecular docking studies. In addition, compounds 3 and 15 showed high antiproliferative activities against prostate PC3 cells (IC50 2.02-4.8 µM), up to 6.5-2.75 stronger than cisplatin. They almost completely reduced the growth and proliferation rates in these cells, without a cytotoxic action against normal HaCaT cell lines. Furthermore, derivatives 3 and 21 induced apoptosis/necrosis in PC3 cells, probably by increasing the intracellular ROS amount, as well as they diminished the IL-6 level in tumor cells.

3.
ACS Photonics ; 10(5): 1662-1670, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215316

RESUMO

The controlled placement of colloidal semiconductor nanocrystals (NCs) onto planar surfaces is crucial for scalable fabrication of single-photon emitters on-chip, which are critical elements of optical quantum computing, communication, and encryption. The positioning of colloidal semiconductor NCs such as metal chalcogenides or perovskites is still challenging, as it requires a nonaggressive fabrication process to preserve the optical properties of the NCs. In this work, periodic arrays of 2500 nanoholes are patterned by electron beam lithography in a poly(methyl methacrylate) (PMMA) thin film on indium tin oxide/glass substrates. Colloidal core/shell CdSe/CdS NCs, functionalized with a SiO2 capping layer to increase their size and facilitate deposition into 100 nm holes, are trapped with a close to optimal Poisson distribution into the PMMA nanoholes via a capillary assembly method. The resulting arrays of NCs contain hundreds of single-photon emitters each. We believe this work paves the way to an affordable, fast, and practical method for the fabrication of nanodevices, such as single-photon-emitting light-emitting diodes based on colloidal semiconductor NCs.

4.
Nanoscale ; 15(4): 1645-1651, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36597874

RESUMO

Giant shell CdSe/CdS quantum dots are bright and flexible emitters, with near-unity quantum yield and suppressed blinking, but their single photon purity is reduced by efficient multiexcitonic emission. We report the observation, at the single dot level, of a large blueshift of the photoluminescence biexciton spectrum (24 ± 5 nm over a sample of 32 dots) for pure-phase wurtzite quantum dots. By spectral filtering, we demonstrate a 2.3 times reduction of the biexciton quantum yield relative to the exciton emission, while preserving as much as 60% of the exciton single photon emission, thus improving the purity from g2(0) = 0.07 ± 0.01 to g2(0) = 0.03 ± 0.01. At a larger pump fluency, spectral purification is even more effective with up to a 6.6 times reduction in g2(0), which is due to the suppression of higher order excitons and shell states experiencing even larger blueshifts. Our results indicate the potential for the synthesis of engineered giant shell quantum dots, with further increased biexciton blueshifts, for quantum optical applications requiring both high purity and brightness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...