Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nanoscale ; 16(14): 6934-6938, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511606

RESUMO

Efficient and robust quantification of the number of nanoparticles in solution is not only essential but also insufficient in nanotechnology and biomedical research. This paper proposes to use optical coherence tomography (OCT) to quantify the number of gold nanorods, which exemplify the nanoparticles with high light scattering signals. Additionally, we have developed an AI-enhanced OCT image processing to improve the accuracy and robustness of the quantification result.

2.
Res Sq ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352508

RESUMO

Glaucoma is a leading cause of visual impairment and blindness in the United States and worldwide. Elevated intraocular pressure (IOP) has been identified as the only modifiable risk factor in glaucoma, and there exists a need for a glaucoma procedure that is safe, efficacious, and can be performed in the outpatient clinic setting. Suprachoroidal expansion has been explored as a method to lower IOP previously. The purpose of this work was to design a monolithic hydrogel implant that would not clear or degrade to potentially achieve long term (possibly permanent) IOP reduction. Here, we developed and showed ex vivo testing of a novel photo-crosslinked polyethylene glycol (PEG) suprachoroidal spacer implant delivered via a custom-designed injector system. We optimized the composition, shape, and mechanics of the implant to be suitable for implantation with the suprachoroidal space. We developed a microneedle injector system to deliver this implant. We showed precise control over implant location and volume occupied within the suprachoroidal space. Further preclinical testing is needed to demonstrate efficacy.

3.
Bioengineering (Basel) ; 11(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247931

RESUMO

The corneal endothelium, comprising densely packed corneal endothelial cells (CECs) adhering to Descemet's membrane (DM), plays a critical role in maintaining corneal transparency by regulating water and ion movement. CECs have limited regenerative capacity within the body, and globally, there is a shortage of donor corneas to replace damaged corneal endothelia. The development of a carrier for cultured CECs may address this worldwide clinical need. In this study we successfully manufactured a gelatin nanofiber membrane (gelNF membrane) using electrospinning, followed by crosslinking with glutaraldehyde (GA). The fabricated gelNF membrane exhibited approximately 80% transparency compared with glass and maintained a thickness of 20 µm. The gelNF membrane demonstrated desirable permeability and degradability for a Descemet's membrane analog. Importantly, CECs cultured on the gelNF membrane at high densities showed no cytotoxic effects, and the expression of key CEC functional biomarkers was verified. To assess the potential of this gelNF membrane as a carrier for cultured CEC transplantation, we used it to conduct Descemet's membrane endothelial keratoplasty (DMEK) on rabbit eyes. The outcomes suggest this gelNF membrane holds promise as a suitable carrier for cultured CEC transplantation, offering advantages in terms of transparency, permeability, and sufficient mechanical properties required for successful transplantation.

4.
Adv Healthc Mater ; : e2303325, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134346

RESUMO

Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.

5.
Clin Ophthalmol ; 17: 3323-3330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026608

RESUMO

Purpose: We examine the rate of and reasons for follow-up in an Artificial Intelligence (AI)-based workflow for diabetic retinopathy (DR) screening relative to two human-based workflows. Patients and Methods: A DR screening program initiated September 2019 between one institution and its affiliated primary care and endocrinology clinics screened 2243 adult patients with type 1 or 2 diabetes without a diagnosis of DR in the previous year in the San Francisco Bay Area. For patients who screened positive for more-than-mild-DR (MTMDR), rates of follow-up were calculated under a store-and-forward human-based DR workflow ("Human Workflow"), an AI-based workflow involving IDx-DR ("AI Workflow"), and a two-step hybrid workflow ("AI-Human Hybrid Workflow"). The AI Workflow provided results within 48 hours, whereas the other workflows took up to 7 days. Patients were surveyed by phone about follow-up decisions. Results: Under the AI Workflow, 279 patients screened positive for MTMDR. Of these, 69.2% followed up with an ophthalmologist within 90 days. Altogether 70.5% (N=48) of patients who followed up chose their location based on primary care referral. Among the subset of patients that were seen in person at the university eye institute under the Human Workflow and AI-Human Hybrid Workflow, 12.0% (N=14/117) and 11.7% (N=12/103) of patients with a referrable screening result followed up compared to 35.5% of patients under the AI Workflow (N=99/279; χ2df=2 = 36.70, p < 0.00000001). Conclusion: Ophthalmology follow-up after a positive DR screening result is approximately three-fold higher under the AI Workflow than either the Human Workflow or AI-Human Hybrid Workflow. Improved follow-up behavior may be due to the decreased time to screening result.

6.
Ophthalmol Sci ; 3(4): 100330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449051

RESUMO

Objective: Detection of diabetic retinopathy (DR) outside of specialized eye care settings is an important means of access to vision-preserving health maintenance. Remote interpretation of fundus photographs acquired in a primary care or other nonophthalmic setting in a store-and-forward manner is a predominant paradigm of teleophthalmology screening programs. Artificial intelligence (AI)-based image interpretation offers an alternative means of DR detection. IDx-DR (Digital Diagnostics Inc) is a Food and Drug Administration-authorized autonomous testing device for DR. We evaluated the diagnostic performance of IDx-DR compared with human-based teleophthalmology over 2 and a half years. Additionally, we evaluated an AI-human hybrid workflow that combines AI-system evaluation with human expert-based assessment for referable cases. Design: Prospective cohort study and retrospective analysis. Participants: Diabetic patients ≥ 18 years old without a prior DR diagnosis or DR examination in the past year presenting for routine DR screening in a primary care clinic. Methods: Macula-centered and optic nerve-centered fundus photographs were evaluated by an AI algorithm followed by consensus-based overreading by retina specialists at the Stanford Ophthalmic Reading Center. Detection of more-than-mild diabetic retinopathy (MTMDR) was compared with in-person examination by a retina specialist. Main Outcome Measures: Sensitivity, specificity, accuracy, positive predictive value, and gradability achieved by the AI algorithm and retina specialists. Results: The AI algorithm had higher sensitivity (95.5% sensitivity; 95% confidence interval [CI], 86.7%-100%) but lower specificity (60.3% specificity; 95% CI, 47.7%-72.9%) for detection of MTMDR compared with remote image interpretation by retina specialists (69.5% sensitivity; 95% CI, 50.7%-88.3%; 96.9% specificity; 95% CI, 93.5%-100%). Gradability of encounters was also lower for the AI algorithm (62.5%) compared with retina specialists (93.1%). A 2-step AI-human hybrid workflow in which the AI algorithm initially rendered an assessment followed by overread by a retina specialist of MTMDR-positive encounters resulted in a sensitivity of 95.5% (95% CI, 86.7%-100%) and a specificity of 98.2% (95% CI, 94.6%-100%). Similarly, a 2-step overread by retina specialists of AI-ungradable encounters improved gradability from 63.5% to 95.6% of encounters. Conclusions: Implementation of an AI-human hybrid teleophthalmology workflow may both decrease reliance on human specialist effort and improve diagnostic accuracy. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

7.
ACS Appl Bio Mater ; 6(5): 1787-1797, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126648

RESUMO

Bioengineered corneal tissue is a promising therapeutic modality for the treatment of corneal blindness as a substitute for cadaveric graft tissue. In this study, we fabricated a collagen gel using ultraviolet-A (UV-A) light and riboflavin as a photosensitizer (PhotoCol-RB) as an in situ-forming matrix to fill corneal wounds and create a cohesive interface between the crosslinked gel and adjacent collagen. The PhotoCol-RB gels supported corneal epithelialization and exhibited higher transparency compared to physically crosslinked collagen. We showed that different riboflavin concentrations yielded gels with different mechanical and biological properties. In vitro experiments using human corneal epithelial cells (hCECs) showed that hCECs are able to proliferate on the gel and express corneal cell markers such as cytokeratin 12 (CK12) and tight junctions (ZO-1). Using an ex vivo burst assay, we also showed that the PhotoCol-RB gels are able to seal corneal perforations. Ex vivo organ culture of the gels filling lamellar keratectomy wounds showed that the epithelium that regenerated over the PhotoCol-RB gels formed a multilayer compared to just a double layer for those that grew over physically cross-linked collagen. These gels can be formed either in situ directly on the wound site to conform to the geometry of a defect, or can be preformed and then applied to the corneal wound. Our results indicate that PhotoCol-RB gels merit further investigation as a way to stabilize and repair deep and perforating corneal wounds.


Assuntos
Colágeno , Córnea , Humanos , Colágeno/farmacologia , Regeneração , Riboflavina/farmacologia , Géis/farmacologia
8.
Cornea ; 42(1): 97-104, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35965399

RESUMO

PURPOSE: We recently showed that in situ-forming collagen gels crosslinked through multifunctional polyethylene glycol (PEG) supported corneal epithelialization 7 days after treatment of lamellar keratectomy wounds. In this study, we aimed to evaluate the longer-term regenerative effects of this gel in animals. METHOD: Corneal wound healing was assessed 60 days after lamellar keratectomy and gel treatment using slitlamp examination, optical coherence tomography (OCT), pachymetry, corneal topography, an ocular response analyzer, and tonometry. The corneas were evaluated for the presence of beta-tubulin, cytokeratin 3, zonula occludens-1, and alpha smooth muscle actin (SMA) markers. Gene expression of aldehyde dehydrogenase 3A1 (ALDH3A1), cluster of differentiation 31, CD163, alpha-SMA, hepatocyte growth factor, and fibroblast growth factor 2 (FGF-2) and protein expression of CD44 and collagen VI were evaluated. RESULTS: Intraocular pressure, corneal thickness, and hysteresis for the corneas treated with collagen-PEG gels did not significantly change compared with the saline group. However, placido disk topography revealed greater regularity of the central cornea in the gel-treated group compared to the saline group. The gel-treated group exhibited a lower degree of epithelial hyperplasia than the saline group. Immunohistochemical and gene expression analysis showed that the gel-treated corneas exhibited lower alpha-SMA expression compared with the saline group. CD163 and CD44 were found to be elevated in the saline-treated group compared with normal corneas. CONCLUSIONS: The in situ-forming collagen-PEG gel promoted epithelialization that improved central corneal topography, epithelial layer morphology, and reduced expression of fibrotic and inflammatory biomarkers after 60 days compared to the saline group.


Assuntos
Lesões da Córnea , Hidrogéis , Animais , Polietilenoglicóis , Seguimentos , Colágeno/metabolismo , Córnea/metabolismo
9.
Transl Vis Sci Technol ; 11(10): 22, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36239965

RESUMO

Purpose: Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods: The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results: The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions: This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance: We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.


Assuntos
Lesões da Córnea , Hidrogéis , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Colágeno/química , Colágeno/farmacologia , Colágeno/uso terapêutico , Colágeno Tipo I , Ésteres , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Polímeros/química , Coelhos
10.
Transl Vis Sci Technol ; 11(9): 9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36112103

RESUMO

Purpose: To investigate and quantify the effect of recombinant human lubricin (rh-lubricin) on model tear film stability. Methods: A custom-built, interferometry-based instrument called the Interfacial Dewetting and Drainage Optical Platform was used to create and record the spatiotemporal evolution of model acellular tear films. Image segmentation and analysis was performed in MATLAB to extract the most essential features from the wet area fraction versus time curve, namely the evaporative break-up time and the final wet area fraction (A10). These two parameters indicate the tear film stability in the presence of rh-lubricin in its unstressed and stressed forms. Results: Our parameters successfully captured the trend of increasing tear film stability with increasing rh-lubricin concentration, and captured differences in rh-lubricin efficacy after various industrially relevant stresses. Specifically, aggregation and fragmentation caused by a 4-week, high temperature stress condition negatively impacted rh-lubricin's ability to maintain model tear film stability. Adsorbed rh-lubricin alone was not sufficient to resist break-up and maintain full area coverage of the model tear film surface. Conclusions: Our results demonstrate that fragmentation and aggregation can negatively impact rh-lubricin's ability to maintain a stable tear film. In addition, the ability of rh-lubricin to maintain wetted area coverage is due to both freely dispersed and adsorbed rh-lubricin. Translational Relevance: Our platform and analysis method provide a facile, intuitive, and clinically relevant means to quantify the effect of ophthalmic drugs and formulations intended for improving tear film stability, as well as capture differences between variants related to drug stability and efficacy.


Assuntos
Glicoproteínas , Lágrimas , Glicoproteínas/química , Glicoproteínas/farmacologia , Humanos , Interferometria/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Lágrimas/química , Visão Ocular
11.
J Phys Chem B ; 126(33): 6338-6344, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35972346

RESUMO

In this work, we describe the development of a tunable, acellular in vitro model of the mucin layer of the human tear film. First, supported lipid bilayers (SLBs) comprised of the phospholipid DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and biotinyl cap PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)) are created on the surface of a glass dome with radius of curvature comparable to the human eye. Next, biotinylated bovine submaxillary mucins (BSM) are tethered onto the SLB using streptavidin protein. The mucin presentation can be tuned by altering the concentration of biotinylated BSM, which we confirm using fluorescence microscopy. Due to the optically smooth surface that results, this model is compatible with interferometry for monitoring film thickness. Below a certain level of mucin coverage, we observe short model tear film breakup times, mimicking a deficiency in membrane-associated mucins. In contrast, the breakup time is significantly delayed for SLBs with high mucin coverage. Because no differences in mobility or wettability were observed, we hypothesize that higher mucin coverage provides a thicker hydrated layer that can protect against external disturbances to thin film stability. This advance paves the way for a more physiological, interferometry-based in vitro model for investigating tear film breakup.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Animais , Bovinos , Humanos , Microscopia de Fluorescência , Mucinas
12.
Diagnostics (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35885619

RESUMO

While color fundus photos are used in routine clinical practice to diagnose ophthalmic conditions, evidence suggests that ocular imaging contains valuable information regarding the systemic health features of patients. These features can be identified through computer vision techniques including deep learning (DL) artificial intelligence (AI) models. We aim to construct a DL model that can predict systemic features from fundus images and to determine the optimal method of model construction for this task. Data were collected from a cohort of patients undergoing diabetic retinopathy screening between March 2020 and March 2021. Two models were created for each of 12 systemic health features based on the DenseNet201 architecture: one utilizing transfer learning with images from ImageNet and another from 35,126 fundus images. Here, 1277 fundus images were used to train the AI models. Area under the receiver operating characteristics curve (AUROC) scores were used to compare the model performance. Models utilizing the ImageNet transfer learning data were superior to those using retinal images for transfer learning (mean AUROC 0.78 vs. 0.65, p-value < 0.001). Models using ImageNet pretraining were able to predict systemic features including ethnicity (AUROC 0.93), age > 70 (AUROC 0.90), gender (AUROC 0.85), ACE inhibitor (AUROC 0.82), and ARB medication use (AUROC 0.78). We conclude that fundus images contain valuable information about the systemic characteristics of a patient. To optimize DL model performance, we recommend that even domain specific models consider using transfer learning from more generalized image sets to improve accuracy.

13.
Biomater Sci ; 10(17): 4997-5005, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35815427

RESUMO

As the collagen layer weakens with increasing age or certain diseases such as keratoconus and myopia, the mechanical property of the collagen layer decreases with corneal deformation. To circumvent these problems, the corneal collagen has been crosslinked with the photosensitizer riboflavin under UV light after de-epithelialization. However, this treatment with riboflavin and UV light can cause notable damage to the eye. Here, the biocompatible rose bengal (RB) dye was conjugated to hyaluronic acid (HA) to enhance the corneal permeability, which can be activated by safe green light with a wavelength of 530 nm. Two-photon microscopy revealed the deep tissue penetration of the HA-RB conjugate in comparison with RB. Collagen fibrillogenesis, ex vivo tensile test, and ex vivo histological analysis confirmed the effective collagen crosslinking by HA-RB conjugate and the light irradiation. Furthermore, we developed a smart contact lens for on-demand HA-RB conjugate delivery from the reservoir embedded in the contact lens. Taken together, we could envision the feasibility of a smart contact lens for biophotonic myopia vision correction.


Assuntos
Lentes de Contato , Miopia , Colágeno , Reagentes de Ligações Cruzadas , Humanos , Ácido Hialurônico , Miopia/tratamento farmacológico , Fármacos Fotossensibilizantes , Riboflavina , Rosa Bengala , Raios Ultravioleta
14.
Regen Ther ; 20: 51-60, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35402662

RESUMO

To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of in situ-forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n = 7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels. Crosslinking of HA hydrogel followed by the administration of HA eye drops and crosslinked HA hydrogels were carried out once a day from days 0-4. Corneal re-epithelialization, opacity, neovascularization, thickness, and histology were evaluated to compare the therapeutic effects of the three groups. Further investigation was conducted on the transparency of HA hydrogels to acquire the practical capabilities of hydrogel as a reservoir for drug delivery. Compared to untreated animals, animals treated with crosslinked HA hydrogels exhibited greater corneal re-epithelialization on days 1, 2, 4, and 7 post-injury (p = 0.004, p = 0.007, p = 0.008, and p = 0.034, respectively) and the least corneal neovascularization (p = 0.008). Histological analysis revealed lower infiltration of stromal inflammatory cells and compact collagen structure in crosslinked HA hydrogel-treated animals than in untreated animals. These findings corresponded with immunohistochemical analyses indicating that the expression of inflammatory markers such as α-SMA, MMP9, and IL1-ß was lower in animals treated with crosslinked HA hydrogels than untreated animals and animals treated only with 0.1% HA eye drops. With beneficial pharmacological effects such as re-epithelization and anti-inflammation, in situ-forming hyaluronic acid (HA) hydrogels may be a promising approach to effective drug delivery in cases of corneal burn injuries.

15.
ACS Appl Mater Interfaces ; 14(16): 18016-18030, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416028

RESUMO

Dry eye disease (DED) affects more than 100 million people worldwide, causing significant patient discomfort and imposing a multi-billion-dollar burden on global health care systems. In DED patients, the natural biolubrication process that facilitates pain-free blinking goes awry due to an imbalance of lipids, aqueous medium, and mucins in the tear film, resulting in ocular surface damage. Identifying strategies to reduce adhesion and shear stresses between the ocular surface and the conjunctival cells lining the inside of the eyelid during blink cycles is a promising approach to improve the signs and symptoms of DED. However, current preclinical models for screening ocular lubricants rely on scarce, heterogeneous tissue samples or model substrates that do not capture the complex biochemical and biophysical cues present at the ocular surface. To recapitulate the hierarchical architecture and phenotype of the ocular interface for preclinical drug screening, we developed an in vitro mucin-deficient DED model platform that mimics the complexity of the ocular interface and investigated its utility in biolubrication, antiadhesion, and barrier protection studies using recombinant human lubricin, a promising investigational therapy for DED. The biomimetic platform recapitulated the pathological changes in biolubrication, adhesion, and barrier functionality often observed in mucin-deficient DED patients and demonstrated that recombinant human lubricin can reverse the damage induced by mucin loss in a dose- and conformation-dependent manner. Taken together, these results highlight the potential of the platform─and recombinant human lubricin─in advancing the standard of care for mucin-deficient DED patients.


Assuntos
Síndromes do Olho Seco , Mucinas , Biomimética , Síndromes do Olho Seco/tratamento farmacológico , Olho , Humanos , Lágrimas
16.
J Pers Med ; 12(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207771

RESUMO

The aim of this study is to develop an AI model that accurately identifies referable blepharoptosis automatically and to compare the AI model's performance to a group of non-ophthalmic physicians. In total, 1000 retrospective single-eye images from tertiary oculoplastic clinics were labeled by three oculoplastic surgeons as having either ptosis, including true and pseudoptosis, or a healthy eyelid. A convolutional neural network (CNN) was trained for binary classification. The same dataset was used in testing three non-ophthalmic physicians. The CNN model achieved a sensitivity of 92% and a specificity of 88%, compared with the non-ophthalmic physician group, which achieved a mean sensitivity of 72% and a mean specificity of 82.67%. The AI model showed better performance than the non-ophthalmic physician group in identifying referable blepharoptosis, including true and pseudoptosis, correctly. Therefore, artificial intelligence-aided tools have the potential to assist in the diagnosis and referral of blepharoptosis for general practitioners.

17.
Adv Mater ; 34(18): e2110536, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194844

RESUMO

Smart contact lenses for continuous glucose monitoring (CGM) have great potential for huge clinical impact. To date, their development has been limited by challenges in accurate detection of glucose without hysteresis for tear glucose monitoring to track the blood glucose levels. Here, long-term robust CGM in diabetic rabbits is demonstrated by using bimetallic nanocatalysts immobilized in nanoporous hydrogels in smart contact lenses. After redox reaction of glucose oxidase, the nanocatalysts facilitate rapid decomposition of hydrogen peroxide and nanoparticle-mediated charge transfer with drastically improved diffusion via rapid swelling of nanoporous hydrogels. The ocular glucose sensors result in high sensitivity, fast response time, low detection limit, low hysteresis, and rapid sensor warming-up time. In diabetic rabbits, smart contact lens can detect tear glucose levels consistent with blood glucose levels measured by a glucometer and a CGM device, reflecting rapid concentration changes without hysteresis. The CGM in a human demonstrates the feasibility of smart contact lenses for further clinical applications.


Assuntos
Lentes de Contato , Diabetes Mellitus , Nanoporos , Animais , Glicemia , Automonitorização da Glicemia , Glucose , Hidrogéis , Coelhos
18.
Artigo em Inglês | MEDLINE | ID: mdl-35148218

RESUMO

BACKGROUND AND OBJECTIVE: Ophthalmologic telemedicine has emerged during the COVID-19 pandemic. The objective of this study is to assess the accuracy and reproducibility of a smartphone-based home vision monitoring system (Sightbook) and to compare it with existing clinical standards. PATIENTS AND METHODS: Near Snellen visual acuity (VA) was measured with Sightbook and compared with conventional measurements for distance and near VA at an academic medical center ophthalmology clinic in 200 patients with a variety of different specified preexisting ocular conditions. Measurements of contrast sensitivity were also compared by using an existing commercially available chart system in 15 normal patients and 15 patients with age-related macular degeneration. RESULTS: Sightbook VA tests were reproducible (SD = ±0.054 logMAR), and correlation with standard VA methods was significant (R > 0.87 and P < .001). Sightbook contrast sensitivity measurements were reproducible (SD/mean ratio, 0.02 to 0.04), yielding results similar to those of standard tests (R2 > 0.87 and P < .001). CONCLUSIONS: Smartphone-based VA and contrast sensitivity are highly correlated with standard charts and may be useful in augmenting limited inoffice care. [Ophthalmic Surg Lasers Imaging Retina. 2022;53:79-84.].


Assuntos
COVID-19 , Smartphone , Humanos , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2
19.
Ocul Surf ; 23: 148-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537415

RESUMO

Severe corneal wounds can lead to ulceration and scarring if not promptly and adequately treated. Hyaluronic acid (HA) has been investigated for the treatment of corneal wounds due to its remarkable biocompatibility, transparency and mucoadhesive properties. However, linear HA has low retention time on the cornea while many chemical moieties used to crosslink HA can cause toxicity, which limits their clinical ocular applications. Here, we used supramolecular non-covalent host-guest interactions between HA-cyclodextrin and HA-adamantane to form shear-thinning HA hydrogels and evaluated their impact on corneal wound healing. Supramolecular HA hydrogels facilitated adhesion and spreading of encapsulated human corneal epithelial cells ex vivo and improved corneal wound healing in vivo as an in situ-formed, acellular therapeutic membrane. The HA hydrogels were absorbed within the corneal stroma over time, modulated mesenchymal cornea stromal cell secretome production, reduced cellularity and inflammation of the anterior stroma, and significantly mitigated corneal edema compared to treatment with linear HA and untreated control eyes. Taken together, our results demonstrate supramolecular HA hydrogels as a promising and versatile biomaterial platform for corneal wound healing.


Assuntos
Lesões da Córnea , Hidrogéis , Córnea , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...