Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Small ; : e2401925, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007535

RESUMO

The voluntary introduction of defects can be considered an effective strategy for enhancing the electrochemical properties of metal oxide electrodes. In this study, the enhanced pseudocapacitive properties of an acceptor (Gd) doped cerium oxide nanoparticle-a sustainable metal oxide with low environmental and human toxicity-are investigated in depth using ex situ X-ray photoemission spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interestingly, with 15 at% Gd doping (15GDC), the specific capacitance of the nanoparticles measured at 1 A g-1 enhanced to 547.8 F g-1, which is fivefold higher than undoped CeO2 (98.7 F g-1 at 1 A g-1). The rate-dependent capacitance is also improved for 15GDC, which showed a 31.0% decrease in the specific capacitance upon a tenfold increase in the current density, while CeO2 showed a 49.9% decrease. The enhanced electrochemical properties are studied in depth via ex situ XPS and EIS analysis, which revealed that the oxygen vacancies at the surface of the nanoparticles played important roles in enhancing both the specific capacitance and the high-rate performance of 15GDC by acting as the active site for pseudocapacitive redox reaction and allowing fast diffusion of oxygen ions at the surface of 15GDC nanoparticles.

2.
ACS Appl Mater Interfaces ; 16(23): 30264-30273, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832451

RESUMO

Despite the advancement of the Internet of Things (IoT) and portable devices, the development of zero-biased sensing systems for the dual detection of light and gases remains a challenge. As an emerging technology, direct energy conversion driven by intriguing physical properties of two-dimensional (2D) materials can be realized in nanodevices or a zero-biased integrated system. In this study, we unprecedentedly attempted to exploit the photostimulated pyrothermoelectric coupling of two-dimensional SnSe for use in zero-biased multimodal transducers for the dual detection of light and gases. We synthesized homogeneous, large-area 6 in SnSe multilayers via a rational synthetic route based on the thermal decomposition of a solution-processed single-source precursor. Zero-biased SnSe transducers for the dual monitoring of light and gases were realized by exploiting the synergistic coupling of the photostimulated pyroelectric and thermoelectric effects of SnSe. The extracted photoresponsivity at 532 nm and NO2 gas responsivity of the SnSe-based transducers corresponded to 1.07 × 10-6 A/W and 13263.6% at 0 V, respectively. To bring universal applicability of the zero-biased SnSe transducers, the wide operation bandwidth photoelectrical properties (visible to NIR) and dynamic current responses toward two NO2/NH3 gases were systematically evaluated.

3.
ACS Appl Mater Interfaces ; 16(22): 28808-28817, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775279

RESUMO

This paper reports chemiresistive multiarray gas sensors through the synthesized ternary nanocomposites, using a one-pot method to integrate two-dimensional MXene (Ti3C2Tx) with Ti-doped WO3 (Ti-WO3/Ti3C2Tx) and Ti3C2Tx with Pd-doped SnO2 (Pd-SnO2/Ti3C2Tx). The gas sensors based on Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx exhibit exceptional sensitivity, particularly in detecting 70% at 1 ppm acetone and 91.1% at 1 ppm of H2S. Notably, our sensors demonstrate a remarkable sensing performance in the low-ppb range for acetone and H2S. Specifically, the Ti-WO3/Ti3C2Tx sensor demonstrates a detection limit of 0.035 ppb for acetone, and the Pd-SnO2/Ti3C2Tx sensor shows 0.116 ppb for H2S. Simultaneous measurements with Ti-WO3/Ti3C2Tx- and Pd-SnO2/Ti3C2Tx-based sensors enable the evaluation of both the concentration and type of unknown target gases, such as acetone or H2S. Furthermore, density functional theory calculations are performed to clarify the role of Ti and Pd doping in enhancing the performance of Ti-WO3/Ti3C2Tx and Pd-SnO2/Ti3C2Tx nanocomposites. Theoretical simulations contribute to a deeper understanding of the doping effects, providing essential insights into the mechanisms underlying the enhanced gas response of the gas sensors. Overall, this work provides valuable insights into the gas-sensing mechanisms and introduces a novel approach for high-performance multiarray gas sensing.

4.
Adv Sci (Weinh) ; 11(23): e2308976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582529

RESUMO

Portable and personalized artificial intelligence (AI)-driven sensors mimicking human olfactory and gustatory systems have immense potential for the large-scale deployment and autonomous monitoring systems of Internet of Things (IoT) devices. In this study, an artificial Q-grader comprising surface-engineered zinc oxide (ZnO) thin films is developed as the artificial nose, tongue, and AI-based statistical data analysis as the artificial brain for identifying both aroma and flavor chemicals in coffee beans. A poly(vinylidene fluoride-co-hexafluoropropylene)/ZnO thin film transistor (TFT)-based liquid sensor is the artificial tongue, and an Au, Ag, or Pd nanoparticles/ZnO nanohybrid gas sensor is the artificial nose. In order to classify the flavor of coffee beans (acetic acid (sourness), ethyl butyrate and 2-furanmethanol (sweetness), caffeine (bitterness)) and the origin of coffee beans (Papua New Guinea, Brazil, Ethiopia, and Colombia-decaffeine), rational combination of TFT transfer and dynamic response curves capture the liquids and gases-dependent electrical transport behavior and principal component analysis (PCA)-assisted machine learning (ML) is implemented. A PCA-assisted ML model distinguished the four target flavors with >92% prediction accuracy. ML-based regression model predicts the flavor chemical concentrations with >99% accuracy. Also, the classification model successfully distinguished four different types of coffee-bean with 100% accuracy.


Assuntos
Nariz Eletrônico , Aprendizado de Máquina , Humanos , Inteligência Artificial , Paladar/fisiologia , Café/química , Odorantes/análise , Olfato/fisiologia , Língua/fisiologia , Óxido de Zinco/química , Análise de Componente Principal
5.
Small ; : e2312120, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558528

RESUMO

The tunable properties of 2D transition-metal dichalcogenide (TMDs) materials are extensively investigated for high-performance and wavelength-tunable optoelectronic applications. However, the precise modification of large-scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer-scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large-area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single-source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2-, Ni0.06Mo0.26S0.68-, and Ni0.1Mo0.9S1.79Se0.21-based photodetectors is 3.51 × 10-4, 1.48, and 0.9 A W-1 for 532 nm and 0.063, 0.42, and 1.4 A W-1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near-infrared (NIR) photodetection.

6.
Small ; : e2308963, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461524

RESUMO

The precise and reversible detection of hydrogen sulfide (H2 S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2 S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2 S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2 S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2 S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2 S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2 S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.

7.
Sci Rep ; 14(1): 4599, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409202

RESUMO

Iontronic devices, recognized for user-friendly soft electronics, establish an electrical double layer (EDL) at the interface between ion gels and electrodes, significantly influencing device performance. Despite extensive research on ion gels and diverse electrode materials, achieving a stable interfacial formation remains a persistent challenge. In this work, we report a solution to address this challenge by employing CO2 irradiation as a bottom-up methodology to directly fabricate highly conductive, conformable laser-induced graphene (LIG) electrodes on a polyimide (PI)-based ion gel. The PI ion gel exhibits exceptional EDL formation at the electrode interface, primarily attributable to efficient ion migration. Particularly, ionic laser-induced graphene (i-LIG) electrodes, derived from the PI ion gel as a precursor, yield high-quality graphene with enhanced crystallinity and an expanded porous structure in the upward direction. This outcome is achieved through a pronounced thermal transfer effect and intercalation phenomenon between graphene layers, facilitated by the presence of ionic liquids (ILs) within the PI ion gel. Ultimately, in comparison to alternative soft electrode-based vertical capacitors, the utilization of i-LIGs and PI ion gels in the vertical capacitor demonstrates reduced interfacial resistance and increased EDL capacitance, emphasizing the extensive potential of iontronic devices. These results not only highlight these features but also introduce a new perspective for advancing next-generation iontronic devices.

8.
Small ; 20(6): e2305311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798936

RESUMO

Structural engineering and hybridization of heterogeneous 2D materials can be effective for advanced supercapacitor. Furthermore, architectural design of electrodes particularly with vertical construction of structurally anisotropic graphene nanosheets, can significantly enhance the electrochemical performance. Herein, MXene-derived TiO2 nanocomposites hybridized with vertical graphene is synthesized via CO2 laser irradiation on MXene/graphene oxide nanocomposite film. Instantaneous photon energy by laser irradiation enables the formation of vertical graphene structures on nanocomposite films, presenting the controlled anisotropy in free-standing film. This vertical structure enables improved supercapacitor performance by forming an open structure, increasing the electrolyte-electrode interface, and creating efficient electron transport path. In addition, the effective oxidation of MXene nanosheets by instantaneous photon energy leads to the formation of rutile TiO2 . TiO2 nanoparticles directly generated on graphene enables the effective current path, which compensates for the low conductivity of TiO2 and enables the functioning of an effective supercapacitor by utilizing its pseudocapacitive properties. The resulting film exhibits excellent specific areal capacitance of 662.9 mF cm-2 at a current density of 5 mA cm-2 . The film also shows superb cyclic stability during 40 000 repeating cycles, maintaining high capacitance. Also, the pseudocapacitive redox reaction kinetics is evaluated, showing fast redox kinetics with potential for high-performance supercapacitor applications.

9.
Small Methods ; 7(10): e2300147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317009

RESUMO

Despite the encouraging properties and research of 2D MoS2 , an ongoing issue associated with the oxidative instability remains elusive for practical optoelectronic applications. Thus, in-depth understanding of the oxidation behavior of large-scale and homogeneous 2D MoS2 is imperative. Here the structural and chemical transformations of large-area MoS2 multilayers by air-annealing with altered temperature and time via combinatorial spectro-microscopic analyses (Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy) are surveyed. The results gave indications pertaining to temperature- and time-dependent oxidation effects: i) heat-driven elimination of redundant residues, ii) internal strain stimulated by the formation of MoO bonds, iii) deterioration of the MoS2 crystallinity, iv) layer thinning, and v) morphological transformation from 2D MoS2 layers to particles. Photoelectrical characterization of the air-annealed MoS2 is implemented to capture the link between the oxidation behavior of MoS2 multilayers and their photoelectrical properties. The photocurrent based on MoS2 air-annealed at 200 °C is assessed to be 4.92 µA, which is 1.73 times higher than that of pristine MoS2 (2.84 µA). The diminution in the photocurrent of the photodetector based on MoS2 air-annealed above 300 °C in terms of the structural, chemical, and electrical conversions induced by the oxidation process is further discussed.

10.
RSC Adv ; 13(19): 13128-13133, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37124004

RESUMO

The rising importance of gas detection has prompted rigorous research on flexible and transparent high-performance gas sensors. We demonstrated a sensor for NO2 detection at room temperature, in which our device was fabricated via screen printing on a flexible substrate, and MoS2 and single-walled carbon nanotube (SWCNT) were coated on a specific area by the self-assembly method. This fabrication process is rapid, facile, and cost-effective. The proposed sensor enables precise and stable NO2 gas sensing from 50 ppb to 100 ppm. This method should also be applicable to the selective detection of other gases.

11.
Small ; 19(22): e2206350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866498

RESUMO

The recent introduction of alkali metal halide catalysts for chemical vapor deposition (CVD) of transition metal dichalcogenides (TMDs) has enabled remarkable two-dimensional (2D) growth. However, the process development and growth mechanism require further exploration to enhance the effects of salts and understand the principles. Herein, simultaneous predeposition of a metal source (MoO3 ) and salt (NaCl) by thermal evaporation is adopted. As a result, remarkable growth behaviors such as promoted 2D growth, easy patterning, and potential diversity of target materials can be achieved. Step-by-step spectroscopy combined with morphological analyses reveals a reaction path for MoS2 growth in which NaCl reacts separately with S and MoO3 to form Na2 SO4 and Na2 Mo2 O7 intermediates, respectively. These intermediates provide a favorable environment for 2D growth, including an enhanced source supply and liquid medium. Consequently, large grains of monolayer MoS2 are formed by self-assembly, indicating the merging of small equilateral triangular grains on the liquid intermediates. This study is expected to serve as an ideal reference for understanding the principles of salt catalysis and evolution of CVD in the preparation of 2D TMDs.

12.
ACS Nano ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625593

RESUMO

A synthetic platform for industrially applicable two-dimensional (2D) semiconductors that addresses the paramount issues associated with large-scale production, wide-range photosensitive materials, and oxidative stability has not yet been developed. In this study, we attained the 6 in. scale production of 2D SnSe semiconductors with spatial homogeneity using a rational synthetic platform based on the thermal decomposition of solution-processed single-source precursors. The long-range structural and chemical homogeneities of the 2D SnSe layers are manifested using comprehensive spectroscopic analyses. Furthermore, the capability of the SnSe-based photodetectors for broadband photodetection is distinctly verified. The photoresponsivity and detectivity of the SnSe-based photodetectors are 5.89 A W-1 and 1.8 × 1011 Jones at 532 nm, 1.2 A W-1 and 3.7 × 1010 Jones at 1064 nm, and 0.14 A W-1 and 4.3 × 109 Jones at 1550 nm, respectively. The minimum rise times for the 532 and 1064 nm lasers are 62 and 374 µs, respectively. The photoelectrical analysis of the 5 × 5 SnSe-based photodetector array reveals 100% active devices with 95.06% photocurrent uniformity. We unequivocally validated that the air and thermal stabilities of the photocurrent yielded from the SnSe-based photodetector are determined to be >30 d in air and 160 °C, respectively, which are suitable for optoelectronic applications.

13.
ACS Omega ; 6(36): 23155-23162, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549116

RESUMO

A challenge for chemiresistive-type gas sensors distinguishing mixture gases is that for highly accurate recognition, massive data processing acquired from various types of sensor configurations must be considered. The impact of data processing is indeed ineffective and time-consuming. Herein, we systemically investigate the effect of the selectivity for a target gas on the prediction accuracy of gas concentration via machine learning based on a support vector machine model. The selectivity factor S(X) of a gas sensor for a target gas "X" is introduced to reveal the correlation between the prediction accuracy and selectivity of gas sensors. The presented work suggests that (i) the strong correlation between the selectivity factor and prediction accuracy has a proportional relationship, (ii) the enhancement of the prediction accuracy of an elemental sensor with a low sensitivity factor can be attained by a complementary combination of the other sensor with a high selectivity factor, and (iii) it can also be boosted by combining the sensor having even a low selectivity factor.

14.
Small ; 17(17): e2007213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719185

RESUMO

Organic polymer-based dielectrics with intrinsic mechanical flexibility and good processability are excellent candidates for the dielectric layer of flexible electronics. These polymer films can become even more rigid and electrically robust when modified through cross-linking processes. Moreover, the composites formed by dispersing nanoscale inorganic fillers in a polymer matrix can exhibit further improved polarization property. However, these strategies can be challenging as homogeneous dispersion of nanomaterials in the matrix is difficult to achieve; thus, degradation of electrically insulating properties of nanocomposite layers is often observed. Here, a high-k, pinhole-free, and flexible poly(vinyl alcohol) (PVA)-based nanocomposite dielectric is presented, incorporating 2D TiO2 nanosheets (NSs) for the first time. Despite the attractive dielectric constant, exceptional flexibility, and electrically insulating property of PVA-TiO2 nanocomposites, only few studies on these materials have been reported. The organic/inorganic nanosheet hybrid layer, which reaches an unprecedentedly high dielectric constant of 43.8 (more than four times higher than that of cross-linked PVA), also exhibits an outstanding leakage current density as low as 10-9 A cm-2 . Furthermore, the repeated bending tests for nanocomposite capacitors reveal their capability of operating without any deterioration of their performances even after 1000 iterations of bending cycles at a bending radius of 3 mm.

15.
Cancer Lett ; 507: 97-111, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744388

RESUMO

KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Endossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Endocitose , Endossomos/genética , Molécula de Adesão da Célula Epitelial/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
16.
ACS Appl Mater Interfaces ; 13(3): 4703-4710, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33435666

RESUMO

Many research groups have been interested in the quartz crystal microbalance (QCM)-based gas sensors due to their superb sensitivity originated from direct mass sensing at the ng level. Despite such high sensitivities observed from QCM sensors, their ability to identify gas compounds still needs to be enhanced. Herein, we report a highly facile method that utilizes microcolumns integrated on a QCM gas-responsive system with enhanced chemical selectivity for sensing and ability to identify volatile organic compound single gases. Graphene oxide (GO) flakes are coated on the QCM electrode to substantially increase the adsorption of gas molecules, and periodic polydimethylsiloxane microcolumns with micrometer-scale width and height were installed on the GO-coated QCM electrode. The observed frequency shifts upon sensing of various single gas molecules (such as ethanol, acetone, hexane, etc.) can be analyzed accurately using a simple exponential model. The QCM sensor system with and without the microcolumn both exhibited high detection response values above 50 ng/cm2 for sensing of the gases. Notably, the QCM sensor equipped with the microcolumn features gas identification ability, which is observed as distinct diverging behavior of time constants upon detection of different gases caused by the difference in diffusional transfer of molecules through the microcolumns. For example, the difference in the calculated time constant between ethanol and acetone increased from 22.6 to 92.1 s after installation of the microcolumn. This approach provides an easy and efficient method for identification of single gases, and it may be applied in various advanced sensor systems to enhance their gas selectivity.

17.
RSC Adv ; 11(37): 22625-22632, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480434

RESUMO

Herein, we reported a wearable photodetector based on hybrid nanocomposites, such as carbon materials and biocompatible semiconductor nanocrystals (NCs), exhibiting excellent photoresponsivity and superior durability. Currently, semiconductor nanocrystal quantum dots (QDs) containing heavy metals, such as lead or cadmium (in the form of lead sulfide (PbS) and cadmium sulfide (CdS)), are known to display excellent detection properties and are thus widely employed in the fabrication of photodetectors. However, the toxic properties of these heavy metals are well known. Hence, in spite of their enormous potential, the QDs based on these heavy metals are not generally preferred in biological or biomedical applications. These limitations, though, can be overcome by the judicious choice of alternate materials such as silver sulfide (Ag2S) NCs, which are biocompatible and exhibit multiple excitons in Ag2S QDs. The other chosen component is a carbon-based material, such as the multi-walled carbon nanotube (MWCNT), which is preferred primarily due to its strong and superior mechanical durability. In this study, a hybrid nanocomposite film was synthesized from Ag2S NCs and MWCNTs by a simple one-step fabrication process using ultrasonic irradiation. Additionally, this method did not involve any chemical functionalization or post-processing step. The size of Ag2S NCs in the hybrid film was controlled by the irradiation time and the power of the ultrasonic radiation. Further, appropriate composition ratio of the hybrid composite was optimized to balance the photo-response and mechanical durability of the photodetector. Thus, using this synthetic method, an excellent photoresponsivity property of the device was demonstrated for a near-infrared (NIR) light source with various light wavelengths. Furthermore, no visible change in photoresponsivity was observed for bending motions up to 105 cycles and for a range of angles (0-60°). This novel method provides an eco-friendly alternative to existing functional composites containing toxic heavy metals and is a promising approach for the development of wearable optoelectronic devices.

18.
ACS Appl Mater Interfaces ; 12(42): 47802-47810, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985173

RESUMO

To gain the target functionality of graphene for gas detection, nonfocused and large-scale compatible MeV electron beam irradiation on graphene with Ag patterns is innovatively adopted in air for chemical patterning of graphene. This strategy allows the metal-assisted site-specific oxidation of graphene to realize monolithically integrated graphene-chemically patterned graphene (CPG)-graphene homojunction-based gas sensors. The size-tunable CPG patterns can be mediated by regulating the size of Ag prepatterns. The impacts of highly energetic electron irradiation (HEEI) on graphene are summarized as follows: (i) the selective p-type doping and the defect generation of graphene by the HEEI-induced oxidation, (ii) the resistance of the homojunction devices manipulated by the HEEI dose, (iii) the band gap opening of graphene as well as the lowering of the Fermi level, (iv) the work function values for pristine graphene and CPG corresponding to 4.14 and 4.88 eV, respectively, and (v) graphene-CPG-graphene homojunction for NO2 gas, revealing an 839% enhanced gas response compared with that of the pristine graphene-based gas sensor.

19.
Ren Fail ; 42(1): 740-747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32718214

RESUMO

Our aim was to determine which leukocyte subtypes are most relevant to ankle-brachial index (ABI) values in patients with non-dialysis-dependent chronic kidney disease (NDD-CKD). The study included 79 NDD-CKD patients aged 62.84 ± 12.09 years (63.33% men; 26.67% patients with diabetes) and 21 age-matched normal controls. According to the estimated glomerular filtration rate (eGFR) calculated by the CKD-Epidemiology Collaboration equation (CKD-EPI), we classified the study population into 2 groups (21 subjects with NDD-CKD with an eGFR 60-89 mL/min/1.73m2, 58 subjects with NDD-CKD with eGFR <60 mL/min/1.73 m2). ABI was calculated as the ratio of the ankle systolic BP divided by the arm systolic BP using an ABI-form device. An automated hematologic analyzer was used to measure total and differential leukocyte counts. Monocyte counts and monocyte-to-total leukocyte count ratios (MTR) in patients with an ABI value <1.10 were significantly higher than those in patients with an ABI value ≥1.10, respectively. Univariate analyses revealed that mean ABI values were negatively correlated with monocyte count (r= -0.341; p = 0.044), MTR (r= -0.346, p = 0.031). Multivariate linear regression analyses showed that monocyte count was negatively associated with ABI values (ß ± SE = -1.825 ± 0.341, p = 0.013). The area under the curve of monocyte counts was 0.695 (95% confidence interval 0.586-0.804, p = 0.002) in predicting an ABI value <1.10. Monocyte counts are negatively associated with ABI values in patients with NDD-CKD without apparent peripheral arterial occlusive disorder (PAOD).


Assuntos
Índice Tornozelo-Braço , Taxa de Filtração Glomerular , Contagem de Leucócitos/estatística & dados numéricos , Monócitos/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Idoso , Área Sob a Curva , Estudos Transversais , Complicações do Diabetes/fisiopatologia , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Curva ROC , Diálise Renal , Fatores de Risco
20.
RSC Adv ; 11(2): 830-837, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423685

RESUMO

The synthesis of organic-inorganic hybrid materials using individual metal-organic molecules as building blocks has been of interest for the last few decades. These hybrid materials are appealing due to the opportunities they provide with respect to a variety of potential applications. Here, we report a novel metal-organic nanostructure made by a hybrid synthetic process that is comprised of thermal evaporation (TE) and atomic layer deposition (ALD) for the metalation of an organic layer. In this work, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (p-(H6)THPP) and tin(ii) bis(trimethylsilyl)amide (Sn(btsa)2) (or diethylzinc (DEZ)) were utilized as the main organic layer and ALD precursors, respectively. Sn and Zn atoms were coordinated sequentially via surface chemical reactions on specific functional groups of the p-(H6)THPP layer, which was deposited on a solid substrate. X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy were used to characterize and confirm the growth mechanism and optical properties of the synthesized hybrid films. This method should serve as a major breakthrough for building advanced organic-inorganic materials-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA