Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 227: 105583, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835849

RESUMO

The presence of diclofenac in the aquatic environment and the risks for aquatic wildlife, especially fish, have been raised in several studies. One way to manage risks without enforcing improved wastewater treatment would be to substitute diclofenac (when suitable from a clinical perspective) with another non-steroidal anti-inflammatory drug (NSAID) associated with less environmental risk. While there are many ecotoxicity-studies of different NSAIDs, they vary extensively in set-up, species studied, endpoints and reporting format, making direct comparisons difficult. We previously published a comprehensive study on the effects of diclofenac in the three-spined stickleback (Gasterosteus aculeatus). Our present aim was to generate relevant effect data for another NSAID (naproxen) using a very similar setup, which also allowed direct comparisons with diclofenac regarding hazards and risks. Sticklebacks were therefore exposed to naproxen in flow-through systems for 27 days. Triplicate aquaria with 20 fish per aquarium were used for each concentration (0, 18, 70, 299 or 1232 µg/L). We investigated bioconcentration, hepatic gene expression, jaw lesions, kidney and liver histology. On day 21, mortalities in the highest exposure concentration group unexpectedly reached ≥ 25 % in all three replicate aquaria, leading us to terminate and sample that group the same day. On the last day (day 27), the mortality was also significantly increased in the second highest exposure concentration group. Increased renal hematopoietic hyperplasia was observed in fish exposed to 299 and 1232 µg/L. This represents considerably higher concentrations than those expected in surface waters as a result of naproxen use. Such effects were observed already at 4.6 µg/L in the experiment with diclofenac (lowest tested concentration). Similar to the responses to diclofenac, a concentration-dependent increase in both relative hepatic gene expression of c7 (complement component 7) and jaw lesions were observed, again at concentrations considerably higher than expected in surface waters. Naproxen bioconcentrated less than diclofenac, in line with the observed effect data. An analysis of recent sales data and reported concentrations in treated sewage effluent in Sweden suggest that despite higher dosages used for naproxen, a complete substitution would only be expected to double naproxen emissions. In summary, naproxen and diclofenac produce highly similar effects in fish but the environmental hazards and risks are clearly lower for naproxen. Hence, if there are concerns for environmental risks to fish with diclofenac, a substitution would be advisable when naproxen presents an adequate alternative from a clinical point-of-view.


Assuntos
Bioacumulação , Diclofenaco/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Naproxeno/toxicidade , Smegmamorpha/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Diclofenaco/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Modelos Teóricos , Naproxeno/metabolismo , Smegmamorpha/genética , Suécia , Poluentes Químicos da Água/metabolismo
2.
Aquat Toxicol ; 189: 87-96, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28601012

RESUMO

Diclofenac, a commonly used non-steroidal anti-inflammatory drug, is considered for regulation under the European water framework directive. This is because effects on fish have been reported at concentrations around those regularly found in treated sewage effluents (∼1µg/L). However, a recent publication reports no effects on fish at 320µg/L. In this study, three-spined sticklebacks (Gasterosteus aculeatus) were exposed to 0, 4.6, 22, 82 and 271µg/L diclofenac in flow-through systems for 28days using triplicate aquaria per concentration. At the highest concentration, significant mortalities were observed already after 21days (no mortalities found up to 22µg/L). Histological analysis revealed a significant increase in the proportion of renal hematopoietic tissue (renal hematopoietic hyperplasia) after 28days at the lowest concentration and at all higher concentrations, following a clear dose-response pattern. Skin ulcerations of the jaw were noted by macroscopic observations, primarily at the two highest concentrations. No histological changes were observed in the liver. There was an increase in the relative hepatic mRNA levels of c7 (complement component 7), a gene involved in the innate immune system, at 22µg/L and at all higher concentrations, again following a clear dose-response. The bioconcentration factor was stable across concentrations, but lower than reported for rainbow trout, suggesting lower internal exposure to the drug in the stickleback. In conclusion, this study demonstrates that diclofenac causes histological changes in the three-spined stickleback at low µg/L concentrations, which cause concern for fish populations exposed to treated sewage effluents.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Rim , Smegmamorpha/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Diclofenaco/metabolismo , Relação Dose-Resposta a Droga , Técnicas Histológicas , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/genética , Smegmamorpha/genética , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA