Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 309(6): 151334, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31383542

RESUMO

The bacterial cell wall provides structural integrity to the cell and protects the cell from internal pressure and the external environment. During the course of the twelve-year funding period of the Collaborative Research Center 766, our work has focused on conducting structure-function studies of enzymes that modify (synthesize or cleave) cell wall components of a range of bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Nostoc punctiforme. Several of our structures represent promising targets for interference. In this review, we highlight a recent structure-function analysis of an enzyme complex that is responsible for the amidation of Lipid II, a peptidoglycan precursor, in S. aureus.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Peptidoglicano/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Peptidoglicano/química , Domínios Proteicos , Staphylococcus/enzimologia , Staphylococcus/metabolismo , Relação Estrutura-Atividade , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
2.
Sci Rep ; 8(1): 18073, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30573753

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 12953, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154570

RESUMO

The peptidoglycan of Staphylococcus aureus is highly amidated. Amidation of α-D-isoglutamic acid in position 2 of the stem peptide plays a decisive role in the polymerization of cell wall building blocks. S. aureus mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin, indicating that targeting the amidation reaction could be a useful strategy to combat this pathogen. The enzyme complex that catalyzes the formation of α-D-isoglutamine in the Lipid II stem peptide was identified recently and shown to consist of two subunits, the glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT. We have solved the crystal structure of the GatD/MurT complex at high resolution, revealing an open, boomerang-shaped conformation in which GatD is docked onto one end of MurT. Putative active site residues cluster at the interface between GatD and MurT and are contributed by both proteins, thus explaining the requirement for the assembled complex to carry out the reaction. Site-directed mutagenesis experiments confirm the validity of the observed interactions. Small-angle X-ray scattering data show that the complex has a similar conformation in solution, although some movement at domain interfaces can occur, allowing the two proteins to approach each other during catalysis. Several other Gram-positive pathogens, including Streptococcus pneumoniae, Clostridium perfringens and Mycobacterium tuberculosis have homologous enzyme complexes. Combined with established biochemical assays, the structure of the GatD/MurT complex provides a solid basis for inhibitor screening in S. aureus and other pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Parede Celular/metabolismo , Complexos Multienzimáticos/metabolismo , Peptidoglicano/metabolismo , Staphylococcus aureus/metabolismo , Amidas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/química , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Domínio Catalítico , Cristalografia por Raios X , Glutamina/análogos & derivados , Glutamina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo
4.
Nucleic Acids Res ; 45(11): 6911-6922, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28472520

RESUMO

Cellular liquid-liquid phase separation (LLPS) results in the formation of dynamic granules that play an important role in many biological processes. On a molecular level, the clustering of proteins into a confined space results from an indefinite network of intermolecular interactions. Here, we introduce and exploit a novel high-throughput bottom-up approach to study how the interactions between RNA, the Dcp1:Dcp2 mRNA decapping complex and the scaffolding proteins Edc3 and Pdc1 result in the formation of processing bodies. We find that the LLPS boundaries are close to physiological concentrations upon inclusion of multiple proteins and RNA. Within in vitro processing bodies the RNA is protected against endonucleolytic cleavage and the mRNA decapping activity is reduced, which argues for a role of processing bodies in temporary mRNA storage. Interestingly, the intrinsically disordered region (IDR) in the Edc3 protein emerges as a central hub for interactions with both RNA and mRNA decapping factors. In addition, the Edc3 IDR plays a role in the formation of irreversible protein aggregates that are potentially detrimental for cellular homeostasis. In summary, our data reveal insights into the mechanisms that lead to cellular LLPS and into the way this influences enzymatic activity.


Assuntos
RNA Fúngico/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Endorribonucleases/química , Endorribonucleases/metabolismo , Extração Líquido-Líquido , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Angew Chem Int Ed Engl ; 53(28): 7354-9, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24862735

RESUMO

In eukaryotic cells, components of the 5' to 3' mRNA degradation machinery can undergo a rapid phase transition. The resulting cytoplasmic foci are referred to as processing bodies (P-bodies). The molecular details of the self-aggregation process are, however, largely undetermined. Herein, we use a bottom-up approach that combines NMR spectroscopy, isothermal titration calorimetry, X-ray crystallography, and fluorescence microscopy to probe if mRNA degradation factors can undergo phase transitions in vitro. We show that the Schizosaccharomyces pombe Dcp2 mRNA decapping enzyme, its prime activator Dcp1, and the scaffolding proteins Edc3 and Pdc1 are sufficient to reconstitute a phase-separation process. Intermolecular interactions between the Edc3 LSm domain and at least 10 helical leucine-rich motifs in Dcp2 and Pdc1 build the core of the interaction network. We show that blocking of these interactions interferes with the clustering behavior, both in vitro and in vivo.


Assuntos
Endorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/enzimologia , Cristalografia por Raios X , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
J Struct Biol ; 186(1): 112-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556575

RESUMO

The BAK1-interacting receptor-like kinase 2 (BIR2) belongs to the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that mediate development and innate immunity in plants and form a monophyletic gene family with the Drosophila Pelle and human interleukin-1 receptor-associated kinases (IRAK). BIR2 is a negative regulator of BAK1-mediated defense mechanisms and cell death responses, yet key residues that are typically required for kinase activity are not present in the BIR2 kinase domain. We have determined the crystal structure of the BIR2 cytosolic domain and show that its nucleotide binding site is occluded. NMR spectroscopy confirmed that neither wild type nor phosphorylation-mimicking mutants of BIR2 bind ATP-analogues in solution, suggesting that BIR2 is a genuine enzymatically inactive pseudokinase. BIR2 is, however, phosphorylated by its target of regulation, BAK1. Using nano LC-MS/MS analysis for site-specific analysis of phosphorylation, we found a high density of BAK1-transphosphorylation sites in the BIR2 juxta membrane domain, a region previously implicated in regulation of RLKs. Our findings provide a structural basis to better understand signaling through kinase-dead domains that are predicted to account for 20% of all Arabidopsis RLKs and 10% of all human kinases.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Adenilil Imidodifosfato/química , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Imunidade Vegetal , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Estrutura Secundária de Proteína , Transdução de Sinais , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...