Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 26, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172704

RESUMO

Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.


Assuntos
Hordeum , ATPases do Tipo-P , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Genoma de Planta , ATPases do Tipo-P/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia
2.
Commun Biol ; 5(1): 1312, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446861

RESUMO

Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C­terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+­ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.


Assuntos
Arabidopsis , Bombas de Próton , Bombas de Próton/genética , Transporte Biológico , Membrana Celular , Prótons , Água , Arabidopsis/genética , Adenosina Trifosfatases
3.
New Phytol ; 236(4): 1409-1421, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35927949

RESUMO

Halophytes tolerate high salinity levels that would kill conventional crops. Understanding salt tolerance mechanisms will provide clues for breeding salt-tolerant plants. Many halophytes, such as quinoa (Chenopodium quinoa), are covered by a layer of epidermal bladder cells (EBCs) that are thought to mediate salt tolerance by serving as salt dumps. We isolated an epidermal bladder cell-free (ebcf) quinoa mutant that completely lacked EBCs and was mutated in REBC and REBC-like1. This mutant showed no loss of salt stress tolerance. When wild-type quinoa plants were exposed to saline soil, EBCs accumulated potassium (K+ ) as the major cation, in quantities far exceeding those of sodium (Na+ ). Emerging leaves densely packed with EBCs had the lowest Na+ content, whereas old leaves with deflated EBCs served as Na+ sinks. When the leaves expanded, K+ was recycled from EBCs, resulting in turgor loss that led to a progressive deflation of EBCs. Our findings suggest that EBCs in young leaves serve as a K+ -powered hydrodynamic system that functions as a water sink for solute storage. Sodium ions accumulate within old leaves that subsequently wilt and are shed. This mechanism improves the survival of quinoa under high salinity conditions.


Assuntos
Chenopodium quinoa , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/genética , Tolerância ao Sal/genética , Chenopodium quinoa/genética , Bexiga Urinária , Melhoramento Vegetal , Salinidade , Sódio , Potássio , Íons , Solo , Água
4.
J Integr Plant Biol ; 64(2): 205-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761872

RESUMO

Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.


Assuntos
Medicago sativa , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Medicago sativa/genética , Fenótipo , Poliploidia , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...