Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 82(1): 221-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144726

RESUMO

Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations.


Assuntos
Proteínas de Bactérias/fisiologia , Fibroblastos/microbiologia , Proteínas de Membrana/fisiologia , Salmonella typhimurium/fisiologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Translocação Bacteriana/fisiologia , Células Cultivadas , Humanos , Proteínas de Membrana/efeitos dos fármacos , Fagócitos/microbiologia , Fagossomos/metabolismo , Inibidores de Proteases/farmacologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Transativadores/metabolismo
2.
Infect Immun ; 81(1): 154-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23090959

RESUMO

Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Salmonella typhimurium/citologia , Salmonella typhimurium/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Estudo de Associação Genômica Ampla/métodos , Ilhas Genômicas/genética , Concentração de Íons de Hidrogênio , Peptídeos e Proteínas de Sinalização Intercelular , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Rim/metabolismo , Rim/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/metabolismo , Mucosa/microbiologia , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Transcriptoma/genética , Virulência/genética
3.
Curr Opin Microbiol ; 11(1): 46-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18282735

RESUMO

Salmonella enterica is an intracellular bacterial pathogen that inhabits membrane-bound vacuoles of eukaryotic cells. Coined as the 'Salmonella-containing vacuole' (SCV), this compartment has been studied for two decades as a replicative niche. Recent findings reveal, however, marked differences in the lifestyle of bacteria enclosed in the SCV of varied host cell types. In fibroblasts, the emerging view supports a model of bacteria facing in the SCV a 'to grow' or 'not to grow' dilemma, which is solved by entering in a dormancy-like state. Fine-tuning of host cell defense/survival routes, drastic metabolic shift down, adaptation to hypoxia conditions, and attenuation of own virulence systems emerge as strategies used by Salmonella to intentionally reduce the growth rate inside the SCV.


Assuntos
Adaptação Fisiológica , Salmonella enterica/crescimento & desenvolvimento , Vacúolos/microbiologia , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...