Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38598696

RESUMO

OBJECTIVES: To determine the frequencies and clonal distributions of putative genetic determinants of resistance to antimicrobials applied for treatment of Clostridioides difficile infection (CDI), as documented in the genomic record. METHODS: We scanned 26 557 C. difficile genome sequences publicly available from the EnteroBase platform for plasmids, point mutations and gene truncations previously reported to reduce susceptibility to vancomycin, fidaxomicin or metronidazole, respectively. We measured the antimicrobial susceptibility of 143 selected C. difficile isolates. RESULTS: The frequency of mutations causing reduced susceptibility to vancomycin and metronidazole, respectively, increased strongly after 2000, peaking at up to 52% of all sequenced C. difficile genomes. However, both mutations declined sharply more recently, reflecting major changes in CDI epidemiology. We detected mutations associated with fidaxomicin resistance in several major genotypes, but found no evidence of international spread of resistant clones. The pCD-METRO plasmid, conferring metronidazole resistance, was detected in a single previously unreported C. difficile isolate, recovered from a hospital patient in Germany in 2008. The pX18-498 plasmid, putatively associated with decreased vancomycin susceptibility, was confined to related, recent isolates from the USA. Phenotype measurements confirmed that most of those genetic features were useful predictors of antibiotic susceptibility, even though ranges of MICs typically overlapped among isolates with and without specific mutations. CONCLUSIONS: Genomic data suggested that resistance to therapeutic antimicrobial drugs is rare in C. difficile. Public antimicrobial resistance marker databases were not equipped to detect most of the genetic determinants relevant to antibiotic therapy of CDI.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38180015

RESUMO

The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.


Assuntos
Ácidos Graxos , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química
3.
Microorganisms ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38138064

RESUMO

Three strains of thermophilic green sulfur bacteria (GSB) are known; all are from microbial mats in hot springs in Rotorua, New Zealand (NZ) and belong to the species Chlorobaculum tepidum. Here, we describe diverse populations of GSB inhabiting Travel Lodge Spring (TLS) (NZ) and hot springs ranging from 36.1 °C to 51.1 °C in the Republic of the Philippines (PHL) and Yellowstone National Park (YNP), Wyoming, USA. Using targeted amplification and restriction fragment length polymorphism analysis, GSB 16S rRNA sequences were detected in mats in TLS, one PHL site, and three regions of YNP. GSB enrichments from YNP and PHL mats contained small, green, nonmotile rods possessing chlorosomes, chlorobactene, and bacteriochlorophyll c. Partial 16S rRNA gene sequences from YNP, NZ, and PHL mats and enrichments from YNP and PHL samples formed distinct phylogenetic clades, suggesting geographic isolation, and were associated with samples differing in temperature and pH, suggesting adaptations to these parameters. Sequences from enrichments and corresponding mats formed clades that were sometimes distinct, increasing the diversity detected. Sequence differences, monophyly, distribution patterns, and evolutionary simulation modeling support our discovery of at least four new putative moderately thermophilic Chlorobaculum species that grew rapidly at 40 °C to 44 °C.

4.
ISME J ; 17(12): 2247-2258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853183

RESUMO

The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Animais , Humanos , Piscirickettsia/genética , Infecções por Piscirickettsiaceae/veterinária , Infecções por Piscirickettsiaceae/microbiologia , RNA Ribossômico 16S/genética , Peixes , Doenças dos Peixes/microbiologia
5.
Microbiol Spectr ; 11(3): e0098723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212677

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can give rise to a range of clinical outcomes from diarrhea to the life-threatening systemic condition hemolytic-uremic syndrome (HUS). Although STEC O157:H7 is the serotype most frequently associated with HUS, a major outbreak of HUS occurred in 2011 in Germany and was caused by a rare serotype, STEC O104:H4. Prior to 2011 and since the outbreak, STEC O104:H4 strains have only rarely been associated with human infections. From 2012 to 2020, intensified STEC surveillance was performed in Germany where the subtyping of ~8,000 clinical isolates by molecular methods, including whole-genome sequencing, was carried out. A rare STEC serotype, O181:H4, associated with HUS was identified, and like the STEC O104:H4 outbreak strain, this strain belongs to sequence type 678 (ST678). Genomic and virulence comparisons revealed that the two strains are phylogenetically related and differ principally in the gene cluster encoding their respective lipopolysaccharide O-antigens but exhibit similar virulence phenotypes. In addition, five other serotypes belonging to ST678 from human clinical infection, such as OX13:H4, O127:H4, OgN-RKI9:H4, O131:H4, and O69:H4, were identified from diverse locations worldwide. IMPORTANCE Our data suggest that the high-virulence ensemble of the STEC O104:H4 outbreak strain remains a global threat because genomically similar strains cause disease worldwide but that the horizontal acquisition of O-antigen gene clusters has diversified the O-antigens of strains belonging to ST678. Thus, the identification of these highly pathogenic strains is masked by diverse and rare O-antigens, thereby confounding the interpretation of their potential risk.


Assuntos
Infecções por Escherichia coli , Escherichia coli O104 , Escherichia coli Shiga Toxigênica , Humanos , Antígenos O/genética , Toxina Shiga , Infecções por Escherichia coli/epidemiologia , Máscaras
6.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098342

RESUMO

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Suínos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle
7.
Microb Biotechnol ; 16(5): 1054-1068, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36998231

RESUMO

A better understanding of the genetic regulation of the biosynthesis of microbial compounds could accelerate the discovery of new biologically active molecules and facilitate their production. To this end, we have investigated the time course of genome-wide transcription in the myxobacterium Sorangium sp. So ce836 in relation to its production of natural compounds. Time-resolved RNA sequencing revealed that core biosynthesis genes from 48 biosynthetic gene clusters (BGCs; 92% of all BGCs encoded in the genome) were actively transcribed at specific time points in a batch culture. The majority (80%) of polyketide synthase and non-ribosomal peptide synthetase genes displayed distinct peaks of transcription during exponential bacterial growth. Strikingly, these bursts in BGC transcriptional activity were associated with surges in the net production rates of known natural compounds, indicating that their biosynthesis was critically regulated at the transcriptional level. In contrast, BGC read counts from single time points had limited predictive value about biosynthetic activity, since transcription levels varied >100-fold among BGCs with detected natural products. Taken together, our time-course data provide unique insights into the dynamics of natural compound biosynthesis and its regulation in a wild-type myxobacterium, challenging the commonly cited notion of preferential BGC expression under nutrient-limited conditions. The close association observed between BGC transcription and compound production warrants additional efforts to develop genetic engineering tools for boosting compound yields from myxobacterial producer strains.


Assuntos
Myxococcales , Sorangium , Sorangium/genética , Policetídeo Sintases/genética , Família Multigênica , Myxococcales/genética
8.
Environ Microbiol ; 25(6): 1174-1185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36772962

RESUMO

The regular use of antimicrobials in livestock production selects for antimicrobial resistance. The potential impact of this practice on human health needs to be studied in more detail, including the role of the environment for the persistence and transmission of antimicrobial-resistant bacteria. During an investigation of a pig farm and its surroundings in Brandenburg, Germany, we detected abundant cephalosporin- and fluoroquinolone-resistant Escherichia coli in pig faeces, sedimented dust, and house flies (Musca domestica). Genome sequencing of E. coli isolates revealed large phylogenetic diversity and plasmid-borne extended-spectrum beta lactamase (ESBL) genes CTX-M-1 in multiple strains. [Correction added on 28 February 2023, after first online publication: In the preceding sentence, 'and TEM-1' was previously included but has been deleted in this version.] Close genomic relationships indicated frequent transmission of antimicrobial-resistant E. coli between pigs from different herds and across buildings of the farm and suggested dust and flies as vectors for dissemination of faecal pathogens. Strikingly, we repeatedly recovered E. coli from flies collected up to 2 km away from the source, whose genome sequences were identical or closely related to those from pig faeces isolates, indicating the fly-associated transport of diverse ESBL-producing E. coli from the pig farm into urban habitation areas. The observed proximity of contaminated flies to human households poses a risk of transmission of antimicrobial-resistant enteric pathogens from livestock to man.


Assuntos
Infecções por Escherichia coli , Moscas Domésticas , Masculino , Animais , Humanos , Suínos , Escherichia coli , Cefalosporinas/farmacologia , Moscas Domésticas/genética , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fluoroquinolonas/farmacologia , Filogenia , beta-Lactamases/genética , Monobactamas , Genoma Bacteriano , Antibacterianos/farmacologia
9.
Environ Microbiol ; 23(12): 7591-7602, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33998128

RESUMO

During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.


Assuntos
Clostridioides difficile , Animais , Galinhas , Clostridioides , Clostridioides difficile/genética , Fertilização , Esterco , Aves Domésticas , Ribotipagem
10.
Stud Health Technol Inform ; 278: 237-244, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34042900

RESUMO

State-subsidized programs develop medical data integration centers in Germany. To get infection disease (ID) researchers involved in the process of data sharing, common interests and minimum data requirements were prioritized. In 06/2019 we have initiated the German Infectious Disease Data Exchange (iDEx) project. We have developed and performed an online survey to determine prioritization of requests for data integration and exchange in ID research. The survey was designed with three sub-surveys, including a ranking of 15 data categories and 184 specific data items and a query of available 51 data collecting systems. A total of 84 researchers from 17 fields of ID research participated in the survey (predominant research fields: gastrointestinal infections n=11, healthcare-associated and antibiotic-resistant infections n=10, hepatitis n=10). 48% (40/84) of participants had experience as medical doctor. The three top ranked data categories were microbiology and parasitology, experimental data, and medication (53%, 52%, and 47% of maximal points, respectively). The most relevant data items for these categories were bloodstream infections, availability of biomaterial, and medication (88%, 87%, and 94% of maximal points, respectively). The ranking of requests of data integration and exchange is diverse and depends on the chosen measure. However, there is need to promote discipline-related digitalization and data exchange.


Assuntos
Doenças Transmissíveis , Hospitais , Alemanha/epidemiologia , Humanos , Armazenamento e Recuperação da Informação , Inquéritos e Questionários
11.
Sci Total Environ ; 780: 146652, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030313

RESUMO

Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50-70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.

12.
Environ Microbiol ; 23(12): 7497-7511, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33655697

RESUMO

ESBL-/AmpC-producing Escherichia coli from organic fertilizers were previously detected on soil surfaces of arable land and might be emitted by wind erosion. To investigate this potential environmental transmission path, we exposed ESBL-/AmpC-positive chicken litter, incorporated in agricultural soils, to different wind velocities in a wind tunnel and took air samples for microbiological analysis. No data exist concerning the airborne tenacity of ESBL-/AmpC-producing E. coli. Therefore, we explored the tenacity of two ESBL/AmpC E. coli strains and E. coli K12 in aerosol chamber experiments at different environmental conditions. In the wind tunnel, ESBL/AmpC-producing E. coli were detected in none of the air samples (n = 66). Non-resistant E. coli were qualitatively detected in 40.7% of air samples taken at wind velocities exceeding 7.3 m s-1 . Significantly increased emission of total viable bacteria with increasing wind velocity was observed. In the aerosol chamber trials, recovery rates of airborne E. coli ranged from 0.003% to 2.8%, indicating a low airborne tenacity. Concluding, an emission of ESBL/AmpC E. coli by wind erosion in relevant concentrations appears unlikely because of the low concentration in chicken litter compared with non-resistant E. coli and their low airborne tenacity, proven in the aerosol chamber trials.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos , Proteínas de Bactérias , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Solo , beta-Lactamases/genética
13.
Environ Int ; 143: 105577, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682052

RESUMO

Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t-1 of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55-70% DM for poultry manure and 75-85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment.


Assuntos
Esterco , Material Particulado , Agricultura , Animais , Fertilizantes , Esterco/análise , Aves Domésticas , Suínos
14.
Microb Biotechnol ; 13(5): 1631-1647, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697046

RESUMO

This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.


Assuntos
Esterco , Solo , Agricultura , Animais , Bactérias/genética , Galinhas , Fertilização , Fertilizantes , RNA Ribossômico 16S/genética , Microbiologia do Solo
15.
Microb Genom ; 6(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32726198

RESUMO

Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly accessible database within EnteroBase (http://enterobase.warwick.ac.uk) that automatically retrieves and assembles C. difficile short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST alleles) were statistically associated with specific hospitals (P<10-4) or single wards (P=0.01) within hospitals, indicating they represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by retrospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, clustering at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies database entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians and public-health officials who are combatting disease caused by C. difficile.


Assuntos
Clostridioides difficile/genética , Infecções por Clostridium , Bases de Dados Genéticas , Mapeamento Cromossômico , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/transmissão , Surtos de Doenças , Genoma Bacteriano , Humanos , Filogenia , Estudos Retrospectivos
16.
Nat Commun ; 11(1): 2044, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341346

RESUMO

Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Stenotrophomonas maltophilia/genética , Alelos , Análise por Conglomerados , Infecção Hospitalar/microbiologia , Genoma Bacteriano , Geografia , Humanos , Infecções Oportunistas/microbiologia , Filogenia , Stenotrophomonas maltophilia/efeitos dos fármacos , Virulência
17.
Poult Sci ; 99(4): 2125-2135, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32241498

RESUMO

Applying broiler litter containing extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) to arable land poses a potential risk for humans to get colonized by contact with contaminated soil or vegetables. Therefore, an inactivation of these bacteria before land application of litter is crucial. We performed 2 short-term litter storage trials (one in summer and winter, respectively), each covering a time span of 5 D to investigate the effectiveness of this method for inactivation of ESBL-producing E. coli in chicken litter. Surface and deep litter samples were taken from a stacked, ESBL-positive chicken litter heap in triplicates in close sampling intervals at the beginning and daily for the last 3 D of the experiments. Samples were analyzed quantitatively and qualitatively for ESBL-producing E. coli, total E. coli, and enterococci. Selected isolates were further characterized by whole-genome sequencing (WGS). In the depth of the heap ESBL-producing E. coli were detected quantitatively until 72 h and qualitatively until the end of the trial in winter. In summer detection was possible quantitatively up to 36 h and qualitatively until 72 h. For surface litter samples a qualitative detection of ESBL-producing E. coli was possible in all samples taken in both trials. In the deep samples a significant decrease in the bacterial counts of over 2 Log10 was observed for total E. coli in the winter and for total E. coli and enterococci in the summer. Genetic differences of the isolates analyzed by WGS did not correlate with survival advantage. In conclusion, short-term storage of chicken litter stacked in heaps is a useful tool for the reduction of bacterial counts including ESBL-producing E. coli. However, incomplete inactivation was observed at the surface of the heap and at low ambient temperatures. Therefore, an extension of the storage period in winter as well as turning of the heap to provide aerobic composting conditions should be considered if working and storage capacities are available on the farms.


Assuntos
Clima , Escherichia coli/fisiologia , Esterco/microbiologia , Viabilidade Microbiana , Tempo (Meteorologia) , Proteínas de Bactérias/metabolismo , Escherichia coli/classificação , Fazendas , Alemanha , Estações do Ano , beta-Lactamases/metabolismo
18.
Front Microbiol ; 10: 2509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736929

RESUMO

OXA-48 is the most common carbapenemase in Enterobacterales in Germany and one of the most frequent carbapenemases worldwide. Several reports have associated bla OXA - 48 with a virulent host phenotype. To challenge this hypothesis, 35 OXA-48-producing clinical isolates of Escherichia coli (n = 15) and Klebsiella pneumoniae (n = 20) were studied in vitro, in vivo employing the Galleria mellonella infection model and by whole-genome sequencing. Clinical isolates belonged to 7 different sequence types (STs) in E. coli and 12 different STs in K. pneumoniae. In 26/35 isolates bla OXA- 48 was located on a 63 kb IncL plasmid. Horizontal gene transfer (HGT) to E. coli J53 was high in isolates with the 63 kb IncL plasmid (transconjugation frequency: ∼103/donor) but low in isolates with non-IncL plasmids (<10-6/donor). Several clinical isolates were both highly cytotoxic against human cells and virulent in vivo. However, 63 kb IncL transconjugants generated from these highly virulent isolates were not more cytotoxic or virulent when compared to the recipient strain. Additionally, no genes associated with virulence were detected by in silico analysis of OXA-48 plasmids. The 63 kb plasmid was highly stable and did not impair growth or fitness in E. coli J53. In conclusion, OXA-48 clinical isolates in Germany are diverse but typically harbor the same 63 kb IncL plasmid which has been reported worldwide. We demonstrate that this 63 kb IncL plasmid has a low fitness burden, high plasmid stability and can be transferred by highly efficient HGT which is likely the cause of the rapid dissemination of OXA-48 rather than the expansion of a single clone or gain of virulence.

19.
Sci Rep ; 9(1): 6959, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061423

RESUMO

To trace the routes and frequencies of transmission of Clostridioides difficile in a tertiary-care hospital in Madrid (Spain), we sequenced the genomes from all C. difficile isolates collected over 36 months (2014-2016) that were indistinguishable from any other isolate by PCR ribotyping. From a total of 589 C. difficile infection cases, we cultivated and PCR-ribotyped 367 C. difficile isolates (62%), of which 265 were genome-sequenced. Based on close relatedness of successively collected isolates (≤2 SNPs difference in their genomes), whole-genome sequencing revealed a total of 17 independent, putative transmission clusters, caused by various C. difficile strains and each containing 2 to 18 cases, none of which had been detected previously by standard epidemiological surveillance. Proportions of linked isolates varied widely among PCR ribotypes, from 3% (1/36) for ribotype 014/020 to 60% (12/20) for ribotype 027, suggesting differential aptitudes for nosocomial spread. Remarkably, only a minority (17%) of transmission recipients had direct ward contact to their presumed donors and specific C. difficile genome types frequently went undetectable for several months before re-emerging later, suggesting reservoirs for the pathogen outside of symptomatic patients. Taken together, our analysis based on genome sequencing suggested considerable within-hospital epidemic spread of C. difficile, even though epidemiological data initially had been inconspicuous.


Assuntos
Clostridioides difficile/genética , Infecções por Clostridium/transmissão , Variação Genética , Genoma Bacteriano , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Int J Med Microbiol ; 309(3-4): 189-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30879971

RESUMO

Clostridium (Clostridioides) difficile is the main cause of nosocomial diarrhoea. Ribotype 018 (RT018) has been recognized as the predominant strain responsible for C. difficile infection (CDI) in Italy, whereas in most other European countries only sporadic RT018 cases occur. Between August and October 2015, a suspected C. difficile outbreak at two associated hospitals in Southern Germany was investigated by comprehensive molecular typing. Surprisingly, RT018 was detected in 9/82 CDI patients, which has never been described before in a German outbreak. Phenotypic analysis revealed fluoroquinolone and macrolide resistance. Genetic subtyping using multiple-locus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing (WGS) was performed and outbreak isolates were directly compared to sporadic German RT018 isolates and to epidemic ones from Milan, Northern Italy. Molecular typing confirmed a hospital outbreak with closely related RT018 isolates. Both, MLVA and WGS revealed high similarity of outbreak strains with epidemic isolates from Italy, but low similarity to other German isolates. Comparison between both typing strategies showed that ribotyping in combination with MLVA was appropriate to identify related isolates and clonal complexes, whereas WGS provided a better discrimination with more detailed information about the phylogenetic relationship of isolates. This is the first hospital outbreak in Germany presumably caused by cross-national transmission of an Italian epidemic RT018 strain.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Surtos de Doenças , Antibacterianos , Toxinas Bacterianas/genética , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , DNA Bacteriano/genética , Diarreia/epidemiologia , Diarreia/microbiologia , Farmacorresistência Bacteriana , Genoma Bacteriano/genética , Alemanha/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Repetições Minissatélites/genética , Tipagem de Sequências Multilocus , Filogenia , Reação em Cadeia da Polimerase , Ribotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...