Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Interface Focus ; 2(5): 669-80, 2012 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24098852

RESUMO

In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible 'colours' and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly.

2.
Curr Med Chem ; 18(4): 604-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21143108

RESUMO

Flaviviral infections have a re-emerging impact on the health situation in developing countries with several billions of people living at risk. In the present review, we focus on three members of the genus Flavivirus belonging to the Flaviviridae family. They are transmitted to humans by mosquito bites, namely those viruses leading to Dengue Fever, Yellow Fever and mosquito-borne Japanese encephalitis. All three virus groups have a spherical structure with a diameter of approximately 50 nm. Although sharing a similar genomic structure and intracellular life cycle, they show different clinical manifestations. Infections are incurable, as there is no antiviral treatment available for either of the three viruses. Thus, prevention and vaccination are the best defenses. The most promising vaccines are live attenuated vaccines (LAVs), such as the YF17D strain against Yellow Fever or the SA-14-14-2 strain against Japanese encephalitis. Additionally, recombinant vaccines for Japanese encephalitis are in development. Although Dengue Fever is the most prevalent arthropode-borne flaviviral infection and a lot of research to develop a vaccine against all four Dengue Fever serotypes was undertaken, no vaccine is available on the market yet. Promising tetravalent vaccine candidates are currently undergoing clinical phase trials, including LAVs, recombinant and chimeric candidates as well as non-replicating vaccine approaches. Additionally, encouraging anti-flaviviral approaches target non-structural proteins, virus-specific proteases essential for cellular maturation of viral particles. Peptide inhibitors against the highly conserved NS2B and NS3 proteases are attractive as pan-flaviviral drug candidates.


Assuntos
Antivirais/química , Infecções por Flaviviridae/prevenção & controle , Doenças Negligenciadas/prevenção & controle , Vacinas Virais , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/prevenção & controle , Infecções por Flaviviridae/tratamento farmacológico , Humanos , Doenças Negligenciadas/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Vacinas Atenuadas/uso terapêutico , Vacinas Virais/uso terapêutico , Febre Amarela/tratamento farmacológico , Febre Amarela/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...