Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672430

RESUMO

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Soroalbumina Bovina , Humanos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/química , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
2.
Methods Mol Biol ; 2598: 301-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355300

RESUMO

Removing cellular material from a tissue, a process called decellularization, reduces the risk of adverse host reactions, allows for efficient decontamination, and extends the shelf-life of the matrix. It facilitates the use of cartilage tissue as human-derived allograft, thus providing the field of cartilage regeneration with a biomaterial unmatched in its similarity to native cartilage in terms of structure, composition, and mechanical properties.The dense extracellular matrix of articular cartilage requires a particularly thorough process to achieve the removal of cells, cell debris, and reagents used in the process. In our studies (Nürnberger et al., EBioMedicine 64:103196, 2021; Schneider et al., Tissue Eng Part C Methods 22(12):1095-1107, 2016), we have successfully developed a protocol for achieving decellularization via physical, chemical, and enzymatic steps. Combining freeze-thaw cycles for devitalization, hydrochloric acid as decellularization agent and the enzymatic removal of glycosaminoglycans, results in an acellular scaffold that is fully biocompatible and promotes cellular attachment. The structure and sophisticated architecture of collagen type II is left intact.This chapter provides a comprehensive guide to the steps and reagents needed to decellularize articular cartilage. In addition to the standard decell-deGAG protocol, a fast option is given which is suitable for thin specimen. Histological evaluation is presented to illustrate treatment success.


Assuntos
Cartilagem Articular , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Ácido Clorídrico , Matriz Extracelular/química
3.
Cartilage ; 13(1): 19476035221075951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189712

RESUMO

OBJECTIVE: Implantation of tissue-engineered tracheal grafts represents a visionary strategy for the reconstruction of tracheal wall defects after resections and may develop into a last chance for a number of patients with severe cicatricial stenosis. The use of a decellularized tracheal substrate would offer an ideally stiff graft, but the matrix density would challenge efficient remodeling into a living cartilage. In this study, we hypothesized that the pores of decellularized laser-perforated tracheal cartilage (LPTC) tissues can be colonized by adult nasal chondrocytes (NCs) to produce new cartilage tissue suitable for the repair of tracheal defects. DESIGN: Human, native tracheal specimens, isolated from cadaveric donors, were exposed to decellularized and laser engraving-controlled superficial perforation (300 µm depth). Human or rabbit NCs were cultured on the LPTCs for 1 week. The resulting revitalized tissues were implanted ectopically in nude mice or orthotopically in tracheal wall defects in rabbits. Tissues were assayed histologically and by microtomography analyses before and after implantation. RESULTS: NCs were able to efficiently colonize the pores of the LPTCs. The extent of colonization (i.e., percentage of viable cells spanning >300 µm of tissue depth), cell morphology, and cartilage matrix deposition improved once the revitalized constructs were implanted ectopically in nude mice. LPTCs could be successfully grafted onto the tracheal wall of rabbits without any evidence of dislocation or tracheal stenosis, 8 weeks after implantation. Rabbit NCs, within the LPTCs, actively produced new cartilage matrix. CONCLUSION: Implantation of NC-revitalized LPTCs represents a feasible strategy for the repair of tracheal wall defects.


Assuntos
Gravuras e Gravação , Engenharia Tecidual , Animais , Cartilagem/transplante , Humanos , Lasers , Camundongos , Camundongos Nus , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
PLoS One ; 17(1): e0262294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986173

RESUMO

PURPOSE: The aim of this study was to investigate the effect of extracorporeal shockwave therapy (ESWT) on bone microstructure as well as the bone-tendon-interface and the musculo-tendinous transition zone to explain the previously shown improved biomechanics in a degenerative rotator cuff tear animal model. This study hypothesized that biomechanical improvements related to ESWT are a result of improved bone microstructure and muscle tendon properties. METHODS: In this controlled laboratory study unilateral supraspinatus (SSP) tendon detachment was performed in 48 male Sprague-Dawley rats. After a degeneration period of three weeks, SSP tendon was reconstructed transosseously. Rats were randomly assigned into three groups (n = 16 per group): control (noSW); intraoperative shockwave treatment (IntraSW); intra- and postoperative shockwave treatment (IntraPostSW). Eight weeks after SSP repair, all rats were sacrificed and underwent bone microstructure analysis as well as histological and immunohistochemical analyses. RESULTS: With exception of cortical porosity at the tendon area, bone microstructure analyses revealed no significant differences between the three study groups regarding cortical and trabecular bone parameters. Cortical Porosity at the Tendon Area was lowest in the IntraPostSW (p≤0.05) group. Histological analyses showed well-regenerated muscle and tendon structures in all groups. Immunohistochemistry detected augmented angiogenesis at the musculo-tendinous transition zone in both shockwave groups indicated by CD31 positive stained blood vessels. CONCLUSION: In conclusion, bone microarchitecture changes are not responsible for previously described improved biomechanical results after shockwave treatment in rotator cuff repair in rodents. Immunohistochemical analysis showed neovascularization at the musculo-tendinous transition zone within ESWT-treated animals. Further studies focusing on neovascularization at the musculo-tendinous transition zone are necessary to explain the enhanced biomechanical and functional properties observed previously. CLINICAL RELEVANCE: In patients treated with a double-row SSP tendon repair, an improvement in healing through ESWT, especially in this area, could prevent a failure of the medial row, which is considered a constantly observed tear pattern.


Assuntos
Fenômenos Biomecânicos/fisiologia , Osso Esponjoso/fisiologia , Lesões do Manguito Rotador/terapia , Manguito Rotador/fisiologia , Cicatrização/fisiologia , Animais , Artroplastia/métodos , Osso Esponjoso/cirurgia , Modelos Animais de Doenças , Tratamento por Ondas de Choque Extracorpóreas/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Procedimentos de Cirurgia Plástica/métodos , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/fisiopatologia , Lesões do Manguito Rotador/cirurgia , Ruptura/fisiopatologia , Ruptura/cirurgia , Ruptura/terapia , Tendões/fisiologia , Tendões/cirurgia , Microtomografia por Raio-X/métodos
5.
J Tissue Eng Regen Med ; 16(2): 207-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861104

RESUMO

Cartilage damage typically starts at its surface, either due to wear or trauma. Treatment of these superficial defects is important in preventing degradation and osteoarthritis. Biomaterials currently used for deep cartilage defects lack appropriate properties for this application. Therefore, we investigated photo-crosslinked gelatin methacryloyl (gelMA) as a candidate for treatment of surface defects. It allows for liquid application, filling of surface defects and forming a protective layer after UV-crosslinking, thereby keeping therapeutic cells in place. gelMA and photo-initiator lithium phenyl-2,4,6-trimethyl-benzoylphosphinate (Li-TPO) concentration were optimized for application as a carrier to create a favorable environment for human articular chondrocytes (hAC). Primary hAC were used in passages 3 and 5, encapsulated into two different gelMA concentrations (7.5 wt% (soft) and 10 wt% (stiff)) and cultivated for 3 weeks with TGF-ß3 (0, 1 and 10 ng/mL). Higher TGF-ß3 concentrations induced spherical cell morphology independent of gelMA stiffness, while low TGF-ß3 concentrations only induced rounded morphology in stiff gelMA. Gene expression did not vary across gel stiffnesses. As a functional model gelMA was loaded with two different cell types (hAC and/or human adipose-derived stem cells [ASC/TERT1]) and applied to human osteochondral osteoarthritic plugs. GelMA attached to the cartilage, smoothened the surface and retained cells in place. Resistance against shear forces was tested using a tribometer, simulating normal human gait and revealing maintained cell viability. In conclusion gelMA is a versatile, biocompatible material with good bonding capabilities to cartilage matrix, allowing sealing and smoothening of superficial cartilage defects while simultaneously delivering therapeutic cells for tissue regeneration.


Assuntos
Condrócitos , Engenharia Tecidual , Cartilagem/metabolismo , Gelatina/metabolismo , Gelatina/farmacologia , Humanos , Hidrogéis/farmacologia , Metacrilatos
6.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33513590

RESUMO

Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remain expensive or require tedious procedures. The aim of this study was to establish a system for resource efficient spheroid generation with additional early readout parameters. This was achieved by a new approach for spheroid generation via self-assembly from monolayer via compartmentation of cell culture surfaces utilising laser engraving (grid plates). The compartmentation triggered contraction and rolling up of the cell monolayer, finishing in condensation into a spheroid in human adipose-derived stem cell (ASC/TERT1) and human articular chondrocytes (hACs)-ASC/TERT1 co-cultures, when cultivated on grid plates under chondrogenic conditions. Plates with 1 and 3 mm grid size yielded stable diameters (about 140µm and 300µm, respectively). ASC/TERT1 spheroids fully formed within 3 weeks while co-cultures took 1-2 weeks, forming significantly faster with increasing hAC ratio (p< 0.05 and 0.01 for 1:1 and 1:4 ASC/TERT1:hAC ratio, respectively). Co-cultures showed slightly lower spheroid diameters, due to earlier spheroid formation and incomplete monolayer formation. However, this was associated with a more homogeneous matrix distribution in the co-culture. Both showed differentiation capacity comparable to standard pellet culture in (immune-)histochemistry and RT-qPCR. To assess usability for cartilage repair, spheroids were embedded into a hydrogel (fibrin), yielding cellular outgrowth and matrix deposition, which was especially pronounced in co-cultures. The herein presented novel cell culture system is not only a promising tool for autonomous spheroid generation with the potential of experimental and clinical application in tissue engineering, but also for the generation of 'building blocks' for subsequential biofabrication strategies such as bioprinting.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Condrogênese , Diferenciação Celular , Células Cultivadas , Condrócitos , Humanos , Engenharia Tecidual
7.
Artigo em Inglês | MEDLINE | ID: mdl-32426347

RESUMO

Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young's modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-ß3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young's modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.

8.
J Orthop Res ; 38(11): 2464-2473, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32167192

RESUMO

Infections related to orthopedic procedures are considered particularly severe when implantation materials are used, because effective treatments for biofilm removal are lacking. In this study, the relatively new approach for infection control by using an erbium:yttrium-aluminum-garnet (Er:YAG) laser was tested. This laser vaporizes all water containing cells in a very effective, precise, and predictable manner and results in only minimal thermal damage. For preliminary testing, 42 steel plates and 42 pins were seeded with mixed cultures. First, the minimally necessary laser energy for biofilm removal was determined. Subsequently, the effectiveness of biofilm removal with the Er:YAG laser and the cleansing of the metal implants with octenidine-soaked gauze was compared. Then, we compared the effectiveness of biofilm removal on 207 steel pins from 41 patients directly after explantation. Sonication and scanning electron microscopy were used for analysis. Laser fluences exceeding 2.8 J/cm2 caused a complete extinction of all living cells by a single-laser impulse. Cleansing with octenidine-soaked gauze and irradiation with the Er:YAG laser are both thoroughly effective when applied to seeded pins. In contrast, when explanted pins with fully developed biofilms were analyzed, we found a significant advantage of the laser procedure. The Er:YAG laser offers a secure, complete, and nontoxic eradication of all kinds of pathogens from metal implants without damaging the implant and without the possible development of resistance. The precise noncontact removal of adjacent tissue is a decisive advantage over conventional disinfectants. Therefore, laser irradiation could become a valuable method in every debridement, antibiotics, and implant retention procedure.


Assuntos
Desinfecção/métodos , Lasers de Estado Sólido/uso terapêutico , Infecções Relacionadas à Prótese/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biofilmes/efeitos da radiação , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Contrast Media Mol Imaging ; 2019: 7483745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31049044

RESUMO

Microcomputed tomography (µCT) is widely used for the study of mineralized tissues, but a similar use for soft tissues is hindered by their low X-ray attenuation. This limitation can be overcome by the recent development of different staining techniques. Staining with Lugol's solution, a mixture of one part iodine and two parts potassium iodide in water, stands out among these techniques for its low complexity and cost. Currently, Lugol staining is mostly used for anatomical examination of tissues. In the present study, we seek to optimize the quality and reproducibility of the staining for ex vivo visualization of soft tissues in the context of a peripheral nerve regeneration model in the rat. We show that the staining result not only depends on the concentration of the staining solution but also on the amount of stain in relation to the tissue volume and composition, necessitating careful adaptation of the staining protocol to the respective specimen tissue. This optimization can be simplified by a stepwise staining which we show to yield a similar result compared to staining in a single step. Lugol staining solution results in concentration-dependent tissue shrinkage which can be minimized but not eliminated. We compared the shrinkage of tendon, nerve, skeletal muscle, heart, brain, and kidney with six iterations of Lugol staining. 60 ml of 0.3% Lugol's solution per cm3 of tissue for 24 h yielded good results on the example of a peripheral nerve regeneration model, and we were able to show that the regenerating nerve inside a silk fibroin tube can be visualized in 3D using this staining technique. This information helps in deciding the region of interest for histological imaging and provides a 3D context to histological findings. Correlating both imaging modalities has the potential to improve the understanding of the regenerative process.


Assuntos
Iodo/farmacologia , Sistema Musculoesquelético/diagnóstico por imagem , Regeneração Nervosa/fisiologia , Nervos Periféricos/diagnóstico por imagem , Animais , Meios de Contraste/farmacologia , Humanos , Imageamento Tridimensional/métodos , Sistema Musculoesquelético/patologia , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/patologia , Ratos , Microtomografia por Raio-X/métodos
10.
Sci Rep ; 8(1): 17010, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451865

RESUMO

Osteoarthritis (OA) is one of the most common causes of disability and represents a major socio-economic burden. Despite intensive research, the molecular mechanisms responsible for the initiation and progression of OA remain inconclusive. In recent years experimental findings revealed elevated levels of reactive oxygen species (ROS) as a major factor contributing to the onset and progression of OA. Hence, we designed a hydrostatic pressure bioreactor system that is capable of stimulating cartilage cell cultures with elevated ROS levels. Increased ROS levels in the media did not only lead to an inhibition of glycosaminoglycans and collagen II formation but also to a reduction of already formed glycosaminoglycans and collagen II in chondrogenic mesenchymal stem cell pellet cultures. These effects were associated with the elevated activity of matrix metalloproteinases as well as the increased expression of several inflammatory cytokines. ROS activated different signaling pathways including PI3K/Akt and MAPK/ERK which are known to be involved in OA initiation and progression. Utilizing the presented bioreactor system, an OA in vitro model based on the generation of ROS was developed that enables the further investigation of ROS effects on cartilage degradation but can also be used as a versatile tool for anti-oxidative drug testing.


Assuntos
Cartilagem Articular/patologia , Condrogênese , Pressão Hidrostática/efeitos adversos , Células-Tronco Mesenquimais/patologia , Osteoartrite/etiologia , Espécies Reativas de Oxigênio/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais
11.
Artigo em Inglês | MEDLINE | ID: mdl-29468155

RESUMO

There is continual demand for animal models that allow a quantitative assessment of angiogenic properties of biomaterials, therapies, and pharmaceuticals. In its simplest form, this is done by subcutaneous material implantation and subsequent vessel counting which usually omits spatial data. We have refined an implantation model and paired it with a computational analytic routine which outputs not only vessel count but also vessel density, distribution, and vessel penetration depth, that relies on a centric vessel as a reference point. We have successfully validated our model by characterizing the angiogenic potential of a fibrin matrix in conjunction with recombinant human vascular endothelial growth factor (rhVEGF165). The inferior epigastric vascular pedicles of rats were sheathed with silicone tubes, which were subsequently filled with 0.2 ml of fibrin and different doses of rhVEGF165, centrically embedding the vessels. Over 4 weeks, tissue samples were harvested and subsequently immunohistologically stained and computationally analyzed. The model was able to detect variations over the angiogenic potentials of growth factor spiked fibrin matrices. Adding 20 ng of rhVEGF165 resulted in a significant increase in vasculature while 200 ng of rhVEGF165 did not improve vascular growth. Vascularized tissue volume increased during the first week and vascular density increased during the second week. Total vessel count increased significantly and exhibited a peak after 2 weeks which was followed by a resorption of vasculature by week 4. In summary, a simple implantation model to study in vivo vascularization with only a minimal workload attached was enhanced to include morphologic data of the emerging vascular tree.

12.
Biol Rev Camb Philos Soc ; 93(2): 1056-1076, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29119723

RESUMO

The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future.


Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/fisiologia , Produtos Biológicos , Carrapatos/fisiologia , Animais , Comportamento Alimentar , Humanos , Glândulas Salivares/fisiologia
13.
J Orthop Surg Res ; 12(1): 181, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29166912

RESUMO

BACKGROUND: The postoperative course after arthroscopic superior labrum anterior to posterior (SLAP) repair using suture anchors is accompanied by a prolonged period of pain, which might be caused by constriction of nerve fibres. The purpose was to histologically investigate the distribution of neurofilament in the superior labrum and the long head of the biceps tendon (LHBT), i.e. the location of type II SLAP lesions. METHODS: Ten LHBTs including the superior labrum were dissected from fresh human specimen and immunohistochemically stained against neurofilament (NF). All slides were scanned at high resolution and converted into tagged image file format, and regions of interest (ROIs) were defined as follows: ROI I-superior labrum anterior to the LHBT origin, ROI II-mid-portion of the superior labrum at the origin of the LHBT, ROI III-superior labrum posterior to the LHBT origin and ROI IV-the most proximal part of the LHBT before its attachment to the superior labrum. The entire images were automatically segmented according to the defined ROIs and measured using a programmed algorithm specifically created for this purpose. The NF-positive cells were counted, and their total size and the area of other tissue were measured separately for the different ROIs. RESULTS: Distribution of NF-positive cells in absolute numbers revealed a clear but insignificantly higher amount in favour of ROI I, representing the superior labrum anterior to the LHBT origin. Setting ROI I at 100%, a significant difference could be seen compared to ROI III, representing the superior labrum posterior to the LHBT origin (ROI I vs. ROI III with a p value < 0.05). CONCLUSIONS: Summarizing, the density of neurofilament is inhomogeneously distributed throughout the superior labrum with the highest number of neurofilament in the anterior superior labrum. Thus, suture placement in type II SLAP repair could play an important role for the postoperative pain-related outcome.


Assuntos
Articulação do Ombro/inervação , Tendões/inervação , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões do Ombro/cirurgia
14.
Sci Rep ; 7(1): 12738, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986527

RESUMO

This study aimed to evaluate the effects of an ultrashort pulsed laser (USPL) (1064 nm, 20 ps, 100 kHz) with different laser fluences (F, 4, 6, 8 J/cm2) and pulse overlaps (PO, 0, 50%) on human periodontal ligament cells (hPDLs) behavior. Dentin samples were ablated with USPL with different combinations of fluences and pulse overlaps; some samples were ablated with an Er:YAG laser (2940 nm, 150 µs, 100 mJ/pulse, 5 J/cm2) and some samples were ground with a carbide bur. Then hPDLs were grown on the samples after different treatments. Dentin morphology and cell adhesion were observed with SEM and gene expressions were measured by RT-PCR. The results showed dentin surfaces ablated with USPL when F = 4 J/cm2, PO = 0, and F = 6 J/cm2, PO = 0 were partially intact with obvious ridges and valleys and cells on these surfaces grew mostly along the valleys. USPL ablated surfaces in other groups were entirely ablated and cell cluster formation was observed. The RT-PCR results showed an upregulation of osteocalcin of cells grown on the dentin after some laser treatment. It can be concluded that USPL could improve the attachment and differentiation of hPDLs and thus potentially promote periodontal tissue regeneration.


Assuntos
Dentina/efeitos da radiação , Lasers de Estado Sólido , Ligamento Periodontal/patologia , Forma Celular/efeitos da radiação , Células Cultivadas , Dentina/ultraestrutura , Regulação da Expressão Gênica , Humanos , Osteogênese/genética
15.
Am J Sports Med ; 45(10): 2238-2246, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28575639

RESUMO

BACKGROUND: Matrix-associated autologous chondrocyte transplantation (MACT) has been an effective therapy for large, full-thickness cartilage lesions for years. However, little is known about how graft maturation is affected by characteristics of transplanted chondrocytes. PURPOSE: To investigate the influence of gene expression of chondrocytes at the time of transplantation on MRI outcomes up to 2 years after MACT. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: This study included 25 patients with 27 symptomatic traumatic defects of articular cartilage, who had undergone MACT in the knee. Postoperative MRI examinations were conducted at 3, 6, 12, and 24 months after surgery. Biochemical graft maturation was assessed by measuring T2 relaxation time values of the transplant and healthy native cartilage areas. The MOCART (magnetic resonance observation of cartilage repair tissue) score was used to evaluate the morphological quality of regeneration tissue. Gene expression (collagen type I, collagen type II, aggrecan, versican, and interleukin-1ß) was determined by real-time polymerase chain reaction (PCR) in transplant residuals at the time point of transplantation and was correlated with MRI outcomes using Spearman's rank correlation coefficient. A Friedman test with post hoc analysis (Wilcoxon signed rank test) conducted with a Bonferroni correction was applied to compare scores at different time points. RESULTS: T2 relaxation time of regeneration tissue improved from a mean ± SD of 74.6 ± 20.1 milliseconds at 3 months to 47.9 ±13.3 milliseconds at 24 months ( P < .003). These values were similar to the T2 relaxation times of the native surrounding cartilage (50.9 ± 15 ms). The calculated T2 index (ratio of regeneration tissue to native cartilage) improved from 1.63 ± 0.76 at 3 months to 1.0 ± 0.4 at 24 months ( P < .011). The MOCART score increased from 51.6 ± 15 points to 72.4 ± 12.2 points ( P < .001). Improvement of the T2 index over time significantly correlated with aggrecan, COL1A1, COL2A1, and versican expression ( rs = 0.9, P < .001; rs = 0.674, P < .012; rs = 0.553, P < .05; and rs = 0.575, P < .04, respectively). No correlation was found for IL-1ß. CONCLUSION: These data demonstrate that matrix production in transplanted chondrocytes affects maturation of MACT grafts in MRI 2 years after surgery.


Assuntos
Condrócitos/transplante , Traumatismos do Joelho/cirurgia , Transplante Autólogo , Adulto , Cartilagem Articular/lesões , Condrócitos/metabolismo , Expressão Gênica , Humanos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Cicatrização/fisiologia , Adulto Jovem
16.
Toxicon ; 135: 24-32, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28551363

RESUMO

Salamanders have evolved a wide variety of antipredator mechanisms and behavior patterns, including toxins and noxious or adhesive skin secretions. The high bonding strength of the natural bioadhesives makes these substances interesting for biomimetic research and applications in industrial and medical sectors. Secretions of toxic species may help to understand the direct effect of harmful substances on the cellular level. In the present study, the biocompatibility of adhesive secretions from four salamander species (Plethodon shermani, Plethodon glutinosus, Ambystoma maculatum, Ambystoma opacum) were analyzed using the MTT assay in cell culture and evaluated against toxic secretions of Pleurodeles waltl, Triturus carnifex, Pseudotriton ruber, Tylototriton verrucosus, and Salamandra salamandra. Their effect on cells was tested in direct contact (direct culture) or under the influence of the extract (indirect exposure) in accordance with the protocol of the international standard norm ISO 10993-5. Human dermal fibroblasts (NHDF), umbilical vein endothelial cells (HUVEC), and articular chondrocytes (HAC), as well as the cell lines C2C12 and L929 were used in both culture types. While the adhesive secretions from Plethodon shermani are cytocompatible and those of Ambystoma opacum are even advantageous, those of Plethodon glutinosus and Ambystoma maculatum appear to be cytotoxic to NDHF and HUVEC. Toxic secretions from Salamandra salamandra exhibited harmful effects on all cell types. Pseudotriton ruber and Triturus carnifex secretions affected certain cell types marginally; those from Pleurodeles waltl and Tylototriton verrucosus were generally well tolerated. The study shows for the first time the effect of salamander secretions on the viability of different cell types in culture. Two adhesive secretions appeared to be cell compatible and are therefore promising candidates for future investigations in the field of medical bioadhesives. Among the toxic secretions tested, only two of the five had a harmful effect on cells, indicating different cell toxicity mechanisms.


Assuntos
Teste de Materiais , Salamandridae , Pele/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Especificidade da Espécie
17.
Tissue Eng Part C Methods ; 22(12): 1095-1107, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27846786

RESUMO

Natural extracellular matrix-derived biomaterials from decellularized allogenic tissues are of increasing interest for tissue engineering because their structure and composition provide a complexity that is not achievable with current manufacturing techniques. The prerequisite to bring allogenic tissue from bench to bedside as a functional biomaterial is the full removal of cells while preserving most of its native characteristics such as structure and composition. The exceptionally dense structure of articular cartilage, however, poses a special challenge for decellularization, scaffold preparation, and reseeding. Therefore, we tested 24 different protocols aiming to remove cells and glycosaminoglycans (GAG) while preserving the collagen backbone and ultrastructure. The resulting matrices were analyzed for cell removal (DNA quantification, haematoxylin and eosin staining), GAG content (dimethyl methylene blue assay, Alcian blue staining and micro-computed tomography), collagen integrity (immunohistochemistry and ultrastructure), and biomechanics (compression test). Furthermore, seeding tests were conducted to evaluate cell viability and attachment to the scaffolds. Sodium dodecyl sulfate-based protocols yielded satisfactory reduction of DNA content, yet had negative effects on cell viability and attachment. Hydrochloric acid efficiently decellularized the scaffold and pepsin emerged as best option for GAG depletion. Combining these two reagents led to our final protocol, most efficient in DNA and GAG depletion while preserving the collagen architecture. The compressive modulus decreased in the absence of GAG to ∼1/3 of native cartilage, which is significantly higher than that by commercially available scaffolds tested as a reference (ranging from 1/25 to 1/100 of native cartilage). Cytocompatibility tests showed that human adipose-derived stromal cells readily adhered to the scaffold. In this study, we established a protocol combining freeze-thaw cycles, osmotic shock, and treatment with hydrochloric acid followed by a pepsin digestion step, achieving successful decellularization and GAG depletion within 1 week, resulting in a cytocompatible material with intact collagen structure. The protocol provides a basis for the generation of allogeneic scaffolds, potentially substituting manufactured scaffolds currently used in clinical articular cartilage treatment.


Assuntos
Tecido Adiposo/citologia , Cartilagem Articular/citologia , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/fisiologia , Cartilagem Articular/fisiologia , Sobrevivência Celular , Células Cultivadas , Condrócitos/fisiologia , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/fisiologia , Microtomografia por Raio-X
18.
Acta Biomater ; 29: 125-134, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26432442

RESUMO

Biomaterials based on decellularized tissues are increasingly attracting attention as functional alternatives to other natural or synthetic materials. However, a source of non-cadaver human allograft material would be favorable. Here we establish a decellularization method of vascular tissue from cryopreserved human placenta chorionic plate starting with an initial freeze-thaw step followed by a series of chemical treatments applied with a custom-made perfusion system. This novel pulsatile perfusion set-up enabled us to successfully decellularize the vascular tissue with lower concentrations of chemicals and shorter exposure times compared to a non-perfusion process. The decellularization procedure described here lead to the preservation of the native extracellular matrix architecture and the removal of cells. Quantitative analysis revealed no significant changes in collagen content and a retained glycosaminoglycan content of approximately 29%. In strain-to-failure tests, the decellularized grafts showed similar mechanical behavior compared to native controls. In addition, the mechanical values for ultimate tensile strength and stiffness were in an acceptable range for in vivo applications. Furthermore, biocompatibility of the decellularized tissue and its recellularizationability to serve as an adequate substratum for upcoming recellularization strategies using primary human umbilical vein endothelial cells (HUVECs) was demonstrated. HUVECs cultured on the decellularized placenta vessel matrix performed endothelialization and maintained phenotypical characteristics and cell specific expression patterns. Overall, the decellularized human placenta vessels can be a versatile tool for experimental studies on vascularization and as potent graft material for future in vivo applications. STATEMENT OF SIGNIFICANCE: In the US alone more than 1million vascular grafts are needed in clinical practice every year. Despite severe disadvantages, such as donor site morbidity, autologous grafting from the patient's own arteries or veins is regarded as the gold standard for vascular tissue repair. Besides, strategies based on synthetic or natural materials have shown limited success. Tissue engineering approaches based on decellularized tissues are regarded as a promising alternative to clinically used treatments to overcome the observed limitations. However, a source for supply of non-cadaver human allograft material would be favorable. Here, we established a decellularization method of vascular tissue from the human placenta chorionic plate, a suitable human tissue source of consistent quality. The decellularized human placenta vessels can be a potent graft material for future in vivo applications and furthermore might be a versatile tool for experimental studies on vascularization.


Assuntos
Prótese Vascular , Córion/química , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alicerces Teciduais/química , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
19.
J Endod ; 41(11): 1852-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26395911

RESUMO

INTRODUCTION: Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS: In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS: In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS: Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.


Assuntos
Polpa Dentária/efeitos dos fármacos , Produtos Finais de Glicação Avançada , Mimosina/metabolismo , Inibidores de Prolil-Hidrolase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Modelos Biológicos , Técnicas de Cultura de Órgãos
20.
J Periodontol ; 86(12): 1331-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26291293

RESUMO

BACKGROUND: Whether the composition of palatal connective tissue grafts (CTGs) varies depending on donor site or harvesting technique in terms of relative amounts of fibrous connective tissue (CT) and fatty/glandular tissue (FGT) is currently unknown and is histologically assessed in the present study. METHODS: In 10 fresh human cadavers, tissue samples were harvested in the anterior and posterior palate and in areas close to (marginal) and distant from (apical) the mucosal margin. Mucosal thickness, lamina propria thickness (defined as the extent of subepithelial portion of the biopsy containing ≤25% or ≤50% FGT), and proportions of CT and FGT were semi-automatically estimated for the entire mucosa and for CTGs virtually harvested by split-flap (SF) preparation minimum 1 mm deep or after deepithelialization (DE). RESULTS: Palatal mucosal thickness, ranging from 2.35 to 6.89 mm, and histologic composition showed high interindividual variability. Lamina propria thickness (P >0.21) and proportions of CT (P = 0.48) and FGT (P = 0.15) did not differ significantly among the donor sites (anterior, posterior, marginal, apical). However, thicker palatal tissue was associated with higher FGT content (P <0.01) and thinner lamina propria (P ≤0.03). Independent of the donor site, DE-harvested CTG contained a significantly higher proportion of CT and a lower proportion of FGT than an SF-harvested CTG (P <0.04). CONCLUSION: Despite high interindividual variability in terms of relative tissue composition in the hard palate, DE-harvested CTG contains much larger amounts of CT and much lower amounts of FGT than SF-harvested CTG, irrespective of the harvesting site.


Assuntos
Tecido Adiposo , Tecido Conjuntivo , Retração Gengival/cirurgia , Humanos , Palato/cirurgia , Palato Duro/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...