Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 584, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683231

RESUMO

BACKGROUND: Sugar beet (Beta vulgaris L.) holds significant importance as a crop globally cultivated for sugar production. The genetic diversity present in sugar beet accessions plays a crucial role in crop improvement programs. METHODS AND RESULTS: During the present study, we collected 96 sugar beet accessions from different regions and extracted DNA from their leaves. Genomic DNA was amplified using SCoT primers, and the resulting fragments were separated by gel electrophoresis. The data were analyzed using various genetic diversity indices, and constructed a population STRUCTURE, applied the unweighted pair-group method with arithmetic mean (UPGMA), and conducted Principle Coordinate Analysis (PCoA). The results revealed a high level of genetic diversity among the sugar beet accessions, with 265 bands produced by the 10 SCoT primers used. The percentage of polymorphic bands was 97.60%, indicating substantial genetic variation. The study uncovered significant genetic variation, leading to higher values for overall gene diversity (0.21), genetic distance (0.517), number of effective alleles (1.36), Shannon's information index (0.33), and polymorphism information contents (0.239). The analysis of molecular variance suggested a considerable amount of genetic variation, with 89% existing within the population. Using STRUCTURE and UPGMA analysis, the sugar beet germplasm was divided into two major populations. Structure analysis partitioned the germplasm based on the origin and domestication history of sugar beet, resulting in neighboring countries clustering together. CONCLUSION: The utilization of SCoT markers unveiled a noteworthy degree of genetic variation within the sugar beet germplasm in this study. These findings can be used in future breeding programs with the objective of enhancing both sugar beet yield and quality.


Assuntos
Beta vulgaris , Variação Genética , Beta vulgaris/genética , Variação Genética/genética , Marcadores Genéticos , Polimorfismo Genético , Filogenia , Genética Populacional/métodos , Alelos , Melhoramento Vegetal/métodos , DNA de Plantas/genética
2.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475425

RESUMO

Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.

3.
Plant Mol Biol ; 114(2): 33, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526768

RESUMO

Industrial hemp (Cannabis sativa L.) is a highly recalcitrant plant under in vitro conditions that can be overcome by employing external stimuli. Hemp seeds were primed with 2.0-3.0% hydrogen peroxide (H2O2) followed by culture under different Light Emitting Diodes (LEDs) sources. Priming seeds with 2.0% yielded relatively high germination rate, growth, and other biochemical and enzymatic activities. The LED lights exerted a variable impact on Cannabis germination and enzymatic activities. Similarly, variable responses were observed for H2O2 × Blue-LEDs combination. The results were also analyzed by multiple regression analysis, followed by an investigation of the impact of both factors by Pareto chart and normal plots. The results were optimized by contour and surface plots for all parameters. Response surface optimizer optimized 2.0% H2O2 × 918 LUX LEDs for maximum scores of all output parameters. The results were predicted by employing Multilayer Perceptron (MLP), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) algorithms. Moreover, the validity of these models was assessed by using six different performance metrics. MLP performed better than RF and XGBoost models, considering all six-performance metrics. Despite the differences in scores, the performance indicators for all examined models were quite close to each other. It can easily be concluded that all three models are capable of predicting and validating data for cannabis seeds primed with H2O2 and grown under different LED lights.


Assuntos
Cannabis , Peróxido de Hidrogênio , Inteligência Artificial , Germinação
4.
Front Genet ; 14: 1150616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252661

RESUMO

Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.

5.
Mol Biol Rep ; 50(6): 4799-4811, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031323

RESUMO

BACKGROUND: Upland cotton is one of the utmost significant strategic fiber crops, and play a vital role in the global textile industry. METHODS AND RESULTS: A total of 128 genotypes comprised Gossypium hirsutum L, Gossypium barbadense L., and pure lines were used to examine genetic diversity using iPBS-retrotransposon markers system. Eleven highly polymorphic primers yielded 287 bands and 99.65% polymorphism was recorded. The mean polymorphism information content was estimated at 0.297 and the average diversity indices for the effective number of alleles, Shannon's information index, and overall gene diversity were 1.481, 0.443, and 0.265, respectively. The analysis of molecular variance (AMOVA) revealed that 69% of the genetic variation was within the population. A model-based STRUCTURE algorithm divided the entire germplasm into four populations and one un-classified population, the genotypes G42 (originating in Egypt) and G128 (originating in the United States), showed the highest genetic distance (0.996) so these genotypes could be suggested for breeding programs as parental lines. CONCLUSIONS: This is the first investigation using an iPBS-retrotransposon marker system to examine the genetic diversity and population structure of upland cotton germplasm. The rich diversity found in upland cotton germplasm could be exploited as a genetic resource when developing breeding programs and could also help with efforts to breed cotton around the world. These findings also show the applicability and effectiveness of iPBS-retrotransposons for the molecular characterization of cotton germplasm.


Assuntos
Gossypium , Retroelementos , Gossypium/genética , Variação Genética/genética , Melhoramento Vegetal , Polimorfismo Genético/genética , Fibra de Algodão
6.
Front Plant Sci ; 13: 996265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204049

RESUMO

Cysteine-rich poly comb-like protein (CPP) is a member of cysteine-rich transcription factors that regulates plant growth and development. In the present work, we characterized twelve CPP transcription factors encoding genes in soybean (Glycine max). Phylogenetic analyses classified CPP genes into six clades. Sequence logos analyses between G. max and G. soja amino acid residues exhibited high conservation. The presence of growth and stress-related cis-acting elements in the upstream regions of GmCPPs highlight their role in plant development and tolerance against abiotic stress. Ka/Ks levels showed that GmCPPs experienced limited selection pressure with limited functional divergence arising from segmental or whole genome duplication events. By using the PAN-genome of soybean, a single nucleotide polymorphism was identified in GmCPP-6. To perform high throughput genotyping, a kompetitive allele-specific PCR (KASP) marker was developed. Association analyses indicated that GmCPP-6-T allele of GmCPP-6 (in exon region) was associated with higher thousand seed weight under both water regimes (well-water and water-limited). Taken together, these results provide vital information to further decipher the biological functions of CPP genes in soybean molecular breeding.

7.
Front Plant Sci ; 13: 952759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247536

RESUMO

The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.

8.
Front Genet ; 13: 897696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092939

RESUMO

Common bean is considered a recalcitrant crop for in vitro regeneration and needs a repeatable and efficient in vitro regeneration protocol for its improvement through biotechnological approaches. In this study, the establishment of efficient and reproducible in vitro regeneration followed by predicting and optimizing through machine learning (ML) models, such as artificial neural network algorithms, was performed. Mature embryos of common bean were pretreated with 5, 10, and 20 mg/L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and 1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20 mg/L BAP exerted a negative impact and resulted in minimum shoot regeneration frequency and shoot count, but produced longer shoots. All output variables (shoot regeneration frequency, shoot counts, and shoot length) increased significantly with the enhancement of BAP concentration in the post-treatment medium. Interaction of the pretreatment × post-treatment medium revealed the need for a specific combination for inducing a high shoot regeneration frequency. Higher shoot count and shoot length were achieved from the interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP and 20 mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed that R 2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and 0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from 0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to 0.0404 for shoot length from all ML models. Among the utilized models, the multilayer perceptron model provided a better prediction and optimization for all output variables, compared to other models. The achieved results can be employed for the prediction and optimization of plant tissue culture protocols used for biotechnological approaches in a breeding program of common beans.

9.
Mol Biol Rep ; 49(7): 6531-6539, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665441

RESUMO

BACKGROUND: Safflower (Carthamus tinctorius L.) is an old oilseed crop with a 1.4 GB genome size and its flowers are used for food coloring, dyes and pharmaceutical industries. It was domesticated from its putative wild ancestor Carthamus palestinus about forty-five hundred years ago in the fertile crescent region.The current study was aimed to determine the genetic diversity, population structure and to check the applicability of iPBS-retrotransposons markers. METHODS AND RESULTS: Eleven POGP primers yielded 70 bands of which 61 were highly polymorphic with 87.14% polymorphism. A great level of genetic variation was examined with higher values of overall gene diversity (0.27), genetic distance (0.53), number of effective alleles (1.46), Shannon's information index (0.41) and polymorphism information contents (0.71). Analysis of molecular variance revealed high genetic variation with 79% within the population. The STRUCTURE, PCoA and Neighbor-joining analysis separated the safflower germplasm into 2 major populations and 1 un-classified population. The accessions which were from Asian countries i.e., China, Afghanistan, Turkey, Iran and Pakistan were genetically similar and clustered together in both populations A and B. The maximum genetic distance was measured 0.88 between Pakistan 26 x Pakistan 24. CONCLUSION: Findings of this research such as maximum diversity indices, higher PIC values showed the effectiveness and utility of POGP markers for the evaluation of genetic relationships among safflower accessions. The results of this study also showed that POGP markers are less effective compared to ISSRs, iPBS-retrotransposons and DArTSeq markers. AMOVA showed high genetic variation (79%) within a population and maximum genetic distance was found between the accessions Pakistan 26- Pakistan 24 and may be suggested as candidate parents for future breeding activities of safflower. The accessions from the fertile crescent region were clustered together and proved the origin of safflower domestication. This study highlights genetic variation among safflower germplasm and could be helpfull for parental selection and planning for future breeding programs.


Assuntos
Carthamus tinctorius , Carthamus tinctorius/genética , Corantes , DNA de Plantas/genética , Variação Genética/genética , Paquistão , Peroxidase/genética , Melhoramento Vegetal , Polimorfismo Genético/genética , Retroelementos
10.
Front Genet ; 13: 848663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586571

RESUMO

Magnesium (Mg) is the fourth most abundant element in the human body and plays the role of cofactor for more than 300 enzymatic reactions. In plants, Mg is involved in various key physiological and biochemical processes like growth, development, photophosphorylation, chlorophyll formation, protein synthesis, and resistance to biotic and abiotic stresses. Keeping in view the importance of this element, the present investigation aimed to explore the Mg contents diversity in the seeds of Turkish common bean germplasm and to identify the genomic regions associated with this element. A total of 183 common bean accessions collected from 19 provinces of Turkey were used as plant material. Field experiments were conducted according to an augmented block design during 2018 in two provinces of Turkey, and six commercial cultivars were used as a control group. Analysis of variance depicted that Mg concentration among common bean accessions was statistically significant (p < 0.05) within each environment, however genotype × environment interaction was non-significant. A moderate level (0.60) of heritability was found in this study. Overall mean Mg contents for both environments varied from 0.33 for Nigde-Dermasyon to 1.52 mg kg-1 for Nigde-Derinkuyu landraces, while gross mean Mg contents were 0.92 mg kg-1. At the province level, landraces from Bolu were rich while the landraces from Bitlis were poor in seed Mg contents respectively. The cluster constellation plot divided the studied germplasm into two populations on the basis of their Mg contents. Marker-trait association was performed using a mixed linear model (Q + K) with a total of 7,900 DArTseq markers. A total of six markers present on various chromosomes (two at Pv01, and one marker at each chromosome i.e., Pv03, Pv07, Pv08, Pv11) showed statistically significant association for seed Mg contents. Among these identified markers, the DArT-3367607 marker present on chromosome Pv03 contributed to maximum phenotypic variation (7.5%). Additionally, this marker was found within a narrow region of previously reported markers. We are confident that the results of this study will contribute significantly to start common bean breeding activities using marker assisted selection regarding improved Mg contents.

11.
Front Plant Sci ; 13: 867731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432392

RESUMO

The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding. Agronomic traits such as seed color, yield, growth habit, and stress tolerance have been the targets for soybean molecular breeding. Genes governing these traits often undergo post-transcriptional modifications, which should be taken into consideration when choosing elite genes for molecular breeding. Post-transcriptional regulations of genes include transcript regulations, protein modifications, and even the regulation of the translational machinery. Transcript regulations involve elements such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for the maintenance of transcript stability or regulation of translation efficiency. Protein modifications involve molecular modifications of target proteins and the alterations of their interacting partners. Regulations of the translational machinery include those on translation factors and the ribosomal protein complex. Post-transcriptional regulations usually involve a set of genes instead of a single gene. Such a property may facilitate molecular breeding. In this review, we will discuss the post-transcriptional modifications of genes related to favorable agronomic traits such as stress tolerance, growth, and nutrient uptake, using examples from soybean as well as other crops. The examples from other crops may guide the selection of genes for marker-assisted breeding in soybean.

12.
Biology (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453738

RESUMO

The potato is one of the most important and valuable crops in terms of consumption worldwide. However, abiotic stressors are the critical delimiters for the growth and productivity of potato. Invertase genes play key roles in carbon metabolism, plant development, and responses to stress stimuli. Therefore, a comprehensive genome-wide identification, characterization and expression analysis of invertase genes was performed in the potato. The current study identified 19 invertase genes, randomly distributed throughout the potato genome. To further elucidate their evolutionary, functional and structural relationship within family and with other plant species, we performed sequence and phylogenetic analysis, which segregated invertase genes into two main groups based on their sequence homology. A total of 11 genes are included in acidic invertases and 8 genes are in neutral or alkaline invertases, elucidating their functional divergence. Tissue specific expression analyses (RNA sequencing and qRT-PCR) of different plant tissues showed differential expression pattern. Invertase genes have higher expression in flower, leaf, root and shoot tissues, while under abiotic stress conditions, the expression of the invertase gene is significantly upregulated. Results of this study revealed that vacuolar and cell wall destined invertases are mainly the functional member genes of the invertase family. This study provides comprehensive data and knowledge about StINV genes in Solanum tuberosum for future genetic and epigenetic studies.

13.
Environ Sci Pollut Res Int ; 29(23): 33909-33919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35031990

RESUMO

Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 µM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.


Assuntos
Arsênio , Azospirillum brasilense , Arsênio/metabolismo , Isopenteniladenosina/análogos & derivados , Raízes de Plantas/metabolismo , Solo , Triticum
14.
Mol Biol Rep ; 49(4): 2553-2564, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35023008

RESUMO

BACKGROUND: Rosewood (Aniba rosaeodora Ducke), which has a great demand due to its essential oil globally, is an evergreen tree of the Amazon forests. Rosewood natural stands have been depleted through deforestation and the destruction of habitat. Currently, rosewood is included in the ICUN red list of endangered species. METHODS AND RESULTS: The 11 highly polymorphic primers amplified total 305 bands of which 301 (98.69%) were polymorphic. The number of effective alleles (Ne), Shannon's information index (I), overall gene diversity (Ht), gene diversity (h), and polymorphism information content (PIC) were (1.562), (0.505), (0.330), (0.337) and (0.343), respectively. These diversity indices explored high genetic diversity in rosewood germplasm. Among studied germplasm, the Santa Marta population was found most diverse by reflecting higher values of diversity indices while the Zungarococha population was found least diverse. The analysis of molecular variance (AMOVA) revealed that 79% of the genetic variation was within the populations. The STRUCTURE algorithm, unweighted pair group with arithmetic mean (UPGMA), and principal coordinate's analysis (PCoA) separated all germplasms into different population groups according to their geographic locations. Santa Marta population was found more diverse by reflecting higher values of diversity indices. The maximum genetic distance (0.868) was found between the Huajoya-10 and Nanay-3. In this investigation, iPBS- retrotransposon marker system was used to explore the genetic diversity of Peruvian rosewood germplasm. CONCLUSIONS: The results in this study such as higher genetic diversity indices, AMOVA (79%) within population and PIC value (0.343) showed the utility and reproducibility of iPBS-retrotransposons in this species successfully. The STRUCTURE algorithm separated the germplasms into six population groups according to their geographic locations. These results have valuable information for the conservation, management strategies and future breeding activities of rosewood.


Assuntos
Variação Genética , Retroelementos , Sítios de Ligação , Variação Genética/genética , Repetições de Microssatélites/genética , Peru , Filogenia , Melhoramento Vegetal , Reprodutibilidade dos Testes , Retroelementos/genética
15.
Front Genet ; 13: 1104635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712883

RESUMO

Citrus viroid infection is emerging as a serious threat because of its efficient systemic movement within the host plant and its quick spread due to contaminated pruning tools. A survey was conducted to investigate the primary distribution and molecular characterization of Citrus bent leaf viroid (CBLVd) and its variants in different citrus cultivars. A total of 154 symptomatic citrus samples were collected and detected by RT‒PCR with newly designed specific primers with the incidence of 36.33%. During biological indexing study on Etrog citron, expressions of reduced leaf size, yellowing with a light green pattern, and bending were observed. Amplified products were sequenced and analyzed using a nucleotide BLAST search, which showed 98% homology with other CBLVd isolates. The results of the phylogenetic tree analysis showed the presence of two main groups (A and B), with the predominant variants of CBLVd, i.e., CVd-I-LSS (Citrus viroid Low Sequence Similarity) sequences, clustering in subgroup A1 along with newly detected CVd-I-LSS from Palestinian sweet lime (Citrus limettioides), which has been identified as a new host of CVd-I-LSS in Pakistan. Further analysis of the sequences in subgroup A1 showed that the variant of CVd-I-LSS infecting citrus cultivars had a close relationship with isolates reported from China, Japan, and Iran, which may have resulted from the exchange of planting material. This study also unveiled the variability in nucleotide sequences of CBLVd, which made it unable to be detected by old primers. The results of this study indicate that the widespread presence of divergent variants of CBLVd is a major concern for the citrus industry in Pakistan and other countries where virulent isolates of CBLVd are prevalent. These findings suggest the need for future research on effective management and quarantine measures to stop the spread of CBLVd.

16.
PLoS One ; 16(11): e0259404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847173

RESUMO

Transcription factors are regulatory proteins known to modulate gene expression. These are the critical component of signaling pathways and help in mitigating various developmental and stress responses. Among them, bZIP, BBR, and BZR transcription factor families are well known to play a crucial role in regulating growth, development, and defense responses. However, limited data is available on these transcription factors in Triticum aestivum. In this study, bZIP, BBR, and BZR sequences from Brachypodium distachyon, Oryza sativa, Oryza barthii, Oryza brachyantha, T. aestivum, Triticum urartu, Sorghum bicolor, Zea mays were retrieved, and dendrograms were constructed to analyze the evolutionary relatedness among them. The sequences clustered into one group indicated a degree of evolutionary correlation highlighting the common lineage of cereal grains. This analysis also exhibited that these genes were highly conserved among studied monocots emphasizing their common ancestry. Furthermore, these transcription factor genes were evaluated for envisaging conserved motifs, gene structure, and subcellular localization in T. aestivum. This comprehensive computational analysis has provided an insight into transcription factor evolution that can also be useful in developing approaches for future functional characterization of these genes in T. aestivum. Furthermore, the data generated can be beneficial in future for genetic manipulation of economically important plants.


Assuntos
Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Brachypodium/genética , Brachypodium/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Alinhamento de Sequência , Sorghum/genética , Sorghum/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Triticum/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
Mol Biol Rep ; 48(10): 6739-6748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480687

RESUMO

BACKGROUND: Research activities aiming to investigate the genetic diversity are very crucial because they provide information for the breeding and germplasm conservation activities. Wheat is one of the most important cereal crops globally by feeding more than a third of the human population around the world. METHODS AND RESULTS: During present investigation, a total of 74 Turkish bread wheat accessions (54 landraces and 20 cultivars) were used as plant material and iPBS-retrotransposons marker system was used for the molecular characterization. 13 polymorphic primers used for molecular characterization resulted a total of 152 bands. Range of calculated diversity indices like polymorphism information content (0.11-0.702), effective numbers of alleles (1.026-1.526), Shannon's information index (0.101-0.247) and gene diversity (0.098-0.443) confirmed higher genetic variations in studied germplasm. Bread wheat landraces reflected higher genetic variations compared to commercial cultivars. Analysis of molecular variance resulted that higher (98%) genetic variations are present within populations. The model-based structure algorithm separated 74 bread wheat accessions in to two populations. Diversity indices based on structure evaluated population's revealed population B as a more diverse population. The principal coordinate analysis and neighbor-joining analysis separated 74 bread wheat accessions according to their collection points. Genetic distance for 74 Turkish bread wheat accessions explored Bingol and Asure accessions as genetically diverse that can be used as parents for breeding activities. CONCLUSIONS: The extensive diversity of bread wheat in Turkish germplasm might be used as genetic resource for the exhaustive wheat breeding program. For instance, accessions Bingol and Asure were found genetically diverse and can be used as parents for future breeding activities.


Assuntos
Primers do DNA/metabolismo , Variação Genética , Retroelementos/genética , Sementes/genética , Triticum/genética , Sítios de Ligação , Pão , Marcadores Genéticos , Genética Populacional , Geografia , Filogenia , Análise de Componente Principal , Turquia
18.
Mol Biol Rep ; 48(9): 6323-6333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383245

RESUMO

BACKGROUND: Scarlet eggplant (Solanum aethiopicum gr. gilo) is a part of African indigenous vegetables and acknowledged as a source of variations in the breeding of Brinjal. Since its genetic diversity is still largely unexplored, therefore genetic diversity and population structure of this plant were investigated in this study. METHODS AND RESULTS: Scarlet eggplant germplasm made of fifty-two accessions originated from two districts of Rwanda was assessed by employing the iPBS-retrotransposon markers system. Twelve most polymorphic primers were employed for molecular characterization and they yielded 329 total bands whereupon 85.03% were polymorphic. The recorded mean polymorphism information content was 0.363 and other diversity indices such as; mean the effective number of alleles, mean Shannon's information index and gene diversity with the following values; 1.298, 0.300 and 0.187 respectively. A superior level of diversity was noticed among accessions from Musanze district. The model-based structure, neighbor-joining, and principal coordinate analysis (PCoA) gathered scarlet germplasm in a divergence manner to their collection district. Analysis of molecular variance (AMOVA) displayed that the utmost variations (81%) in scarlet eggplant germplasm are resulting in differences within populations. CONCLUSIONS: The extensive diversity of scarlet eggplant in Rwanda might be used to form the base and genetic resource of an exhaustive breeding program of this economically important African indigenous vegetable. For instance, accessions MZE53 and GKE11 might be proposed as parent candidates due to their high relative genetic distance (0.6781).


Assuntos
Primers do DNA/genética , Polimorfismo Genético , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/genética , Solanum melongena/genética , Solanum/genética , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Melhoramento Vegetal , Ruanda , Sequências Repetidas Terminais/genética
19.
Physiol Mol Biol Plants ; 27(7): 1609-1622, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34366600

RESUMO

Common bean is a nutrient-dense legume crop serving as a source of food for millions of people. Characterization of unexplored common bean germplasm to unlock the phenotypic and genetic variations is still needed to explore the breeding potential of this crop. The current study aimed to dissect the genetic basis having association for days to flowering (DF). A total of 188 common bean accessions collected from 19 provinces of Turkey were used as plant material under five environments and two locations. Analysis of variance (ANOVA) revealed that genotypes and genotype by environment interaction have significant effects on DF. A total of 10 most stable accessions were evaluated from stability analysis. Overall maximum (75) and minimum (54) DF were observed for Hakkari-51 and Mus-46 accessions, respectively. The implemented constellation plot divided studied germplasm according to their DF and growth habit. A total of 7900 DArTseq markers were used for association analysis. Mixed linear model using the Q + K Model resulted a total of 18 DArTseq markers from five environments. DArT-8668385 marker identified in Bolu during 2016 was also associated with DF in Sivas during 2017. Combined data of five years resulted a total of four markers (DArT-22346534, DArT-3369768, DArT-3374613, and DArT-3370801) having significant association ( p < 0.01 ) for DF. DArT-22346534 present on Pv 08 accounted a maximum of 9.89% variation to the studied trait. A total of four putative candidate genes were predicted from sequences reflecting homology to identified four DArTseq markers. We envisage that exploitation of identified DArTseq markers will hopefully beneficial for the development of new common bean varieties having better adaptation ability to changing climatic conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01029-8.

20.
Front Plant Sci ; 12: 804600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126430

RESUMO

The domain of the unknown function 221 proteins regulate several processes in plants, including development, growth, hormone transduction mechanism, and abiotic stress response. Therefore, a comprehensive analysis of the potato genome was conducted to identify the deafness-dystonia peptide (DDP) proteins' role in potatoes. In the present study, we performed a genome-wide analysis of the potato domain of the unknown function 221 (DUF221) genes, including phylogenetic inferences, chromosomal locations, gene duplications, gene structures, and expression analysis. In our results, we identified 10 DDP genes in the potato genome. The phylogenetic analysis results indicated that StDDPs genes were distributed in all four clades, and clade IV was the largest clade. The gene duplication under selection pressure analysis indicated various positive and purifying selections in StDDP genes. The putative stu-miRNAs from different families targeting StDDPs were also predicted in the present study. Promoter regions of StDDP genes contain different cis-acting components involved in multiple stress responses, such as phytohormones and abiotic stress-responsive factors. The analysis of the tissue-specific expression profiling indicated the StDDPs gene expression in stem, root, and leaf tissues. We subsequently observed that StDDP4, StDDP5, and StDDP8 showed higher expressions in roots, stems, and leaves. StDDP5 exhibited high expression against heat stress response, and StDDP7 showed high transcript abundance against salt stress in potatoes. Under abscisic acid (ABA) and indole acetic acid (IAA) treatments, seven StDDP genes' expressions indicated that ABA and IAA performed important roles in immunity response. The expression profiling and real-time qPCR of stems, roots, and leaves revealed StDDPs' significant role in growth and development. These expression results of DDPs are primary functional analysis and present basic information for other economically important crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...