Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(26): 37910-37919, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878564

RESUMO

We studied a high-accuracy hybrid optics modeling for macroscopic lighting devices containing highly diffractive elements. For a two-dimensional (2D) grating, we achieved forward and backward diffraction distributions at omnidirectional incidence by conducting rigorous coupled-wave analysis and then assigned the diffuse information to a virtual, planar surface in a ray-optics model. By using the integrated ray-wave optics simulation, we obtained extraction efficiencies and far-field distributions of millimeter-scale (0.5 × 0.5 × 0.1 mm3) flip-chip GaN-based light-emitting diodes (LEDs) with embedded 2D gratings. The increased index contrast of 2D gratings progressively improved the extraction of light via the top face of the substrates, thus inducing a vertical beaming effect that strongly supported measured data. The outcoupling features related to the index contrast of gratings were understood by performing Fourier analysis; a high-index-contrast grating preferred to excite high-order diffraction modes, thereby effectively converting tightly bound waveguide modes into leaky light through the top escape route. The simulation strategy developed herein will be essential for designing directional illuminations and micro-LED displays.

2.
Opt Express ; 26(10): A450-A461, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801265

RESUMO

Breaking the total internal reflection far above a critical angle (i.e., outcoupling deep-trap guided modes) can dramatically improve existing light-emitting devices. Here, we report a deep-trap guided modes outcoupler using densely arranged microstructured hollow cavities. Measurements of the leaky mode dispersions of hollow-cavity gratings accurately quantify the wavelength-dependent outcoupling strength above a critical angle, which is progressively improved over the full visible spectrum by increasing the packing density. Comparing hollow- and filled-cavity gratings, which have identical morphologies except for their inner materials (void vs. solid sapphire), reveals the effectiveness of using the hollow-cavity grating to outcouple deep-trap guided modes, which results from its enhanced transmittance at near-horizontal incidence. Scattering analysis shows that the outcoupling characteristics of a cavity array are dictated by the forward scattering characteristics of their individual cavities, suggesting the importance of a rationally designed single cavity. We believe that a hollow-cavity array tailored for different structures and spectra will lead to a technological breakthrough in any type of light-emitting device.

3.
Small ; 14(20): e1800056, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635814

RESUMO

Transparent conductive electrodes (TCEs) featuring a smooth surface are indispensable for preserving pristine electrical characteristics in optoelectronic and transparent electronic devices. For high-efficiency organic light emitting diodes (OLEDs), a high outcoupling efficiency, which is crucial, is only achieved by incorporating a wavelength-scale undulating surface into a TCE layer, but this inevitably degrades device performance. Here, an optically flat, high-conductivity TCE composed of core/shell Ag/ZnO nanochurros (NCs) is reported embedded within a resin film on a polyethylene terephthalate substrate, simultaneously serving as an efficient outcoupler and a flexible substrate. The ZnO NCs are epitaxially grown on the {100} planes of a pentagonal Ag core and the length of ZnO shells is precisely controlled by the exposure time of Xe lamp. Unlike Ag nanowires films, the Ag/ZnO NCs films markedly boost the optical tunneling of light. Green-emitting OLEDs (2.78 × 3.5 mm2 ) fabricated with the Ag/ZnO TCE exhibit an 86% higher power efficiency at 1000 cd m-2 than ones with an Sn-doped indium oxide TCE. A full-vectorial electromagnetic simulation suggests the suppression of plasmonic absorption losses within their Ag cores. These results provide a feasibility of multifunctional TCEs with synthetically controlled core/shell nanomaterials toward the development of high-efficiency LED and solar cell devices.

4.
Opt Express ; 25(15): 17556-17561, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789247

RESUMO

We employed a patterned current blocking layer (CBL) to enhance light output power of GaN-based light-emitting diodes (LEDs). Nanoimprint lithography (NIL) was used to form patterned CBLs (a diameter of 260 nm, a period of 600, and a height of 180 nm). LEDs (chip size: 300 × 800 µm2) fabricated with no CBL, a conventional SiO2 CBL, and a patterned SiO2 CBL, respectively, exhibited forward-bias voltages of 3.02, 3.1 and 3.1 V at an injection current of 20 mA. The LEDs without and with CBLs gave series resistances of 9.8 and 11.0 Ω, respectively. The LEDs with a patterned SiO2 CBL yielded 39.6 and 11.9% higher light output powers at 20 mA, respectively, than the LEDs with no CBL and conventional SiO2 CBL. On the basis of emission images and angular transmittance results, the patterned CBL-induced output enhancement is attributed to the enhanced light extraction and current spreading.

5.
Nanotechnology ; 28(4): 045205, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27991452

RESUMO

Indium tin oxide (ITO) nanodots (NDs) were combined with Ag nanowires (Ag NWs) as a p-type electrode in near ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The Ag NWs were 30 ± 5 nm in diameter and 25 ± 5 µm in length. The transmittance of 10 nm-thick ITO-only was 98% at 385 nm, while the values for ITO ND/Ag NW were 83%-88%. ITO ND/Ag NW films showed lower sheet resistances (32-51 Ω sq-1) than the ITO-only film (950 Ω sq-1). LEDs (chip size: 300 × 800 µm2) fabricated using the ITO NDs/Ag NW electrodes exhibited higher forward-bias voltages (3.52-3.75 V at 20 mA) than the LEDs with the 10 nm-thick ITO-only electrode (3.5 V). The LEDs with ITO ND/Ag NW electrodes yielded a 24%-62% higher light output power (at 20 mA) than those with the 10 nm-thick ITO-only electrode. Furthermore, finite-difference time-domain (FDTD) simulations were performed to investigate the extraction efficiency. Based on the emission images and FDTD simulations, the enhanced light output with the ITO ND/Ag NW electrodes is attributed to improved current spreading and better extraction efficiency.

6.
Opt Lett ; 41(7): 1578-81, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192291

RESUMO

We propose rationally designed 3D grating nanowires for boosting light-matter interactions. Full-vectorial simulations show that grating nanowires sustain high-amplitude waveguide modes and induce a strong optical antenna effect, which leads to an enhancement in nanowire absorption at specific or broadband wavelengths. Analyses of mode profiles and scattering spectra verify that periodic shells convert a normal plane wave into trapped waveguide modes, thus giving rise to scattering dips. A 200 nm diameter crystalline Si nanowire with designed periodic shells yields an enormously large current density of ∼28 mA/cm2 together with an absorption efficiency exceeding unity at infrared wavelengths. The grating nanowires studied herein will provide an extremely efficient absorption platform for photovoltaic devices and color-sensitive photodetectors.

7.
Nano Lett ; 16(5): 3301-8, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27045458

RESUMO

Two-dimensional high-index-contrast dielectric gratings exhibit unconventional transmission and reflection due to their morphologies. For light-emitting devices, these characteristics help guided modes defeat total internal reflections, thereby enhancing the outcoupling efficiency into an ambient medium. However, the outcoupling ability is typically impeded by the limited index contrast given by pattern media. Here, we report strong-diffraction, high-index-contrast cavity engineered substrates (CESs) in which hexagonally arranged hemispherical air cavities are covered with a 80 nm thick crystallized alumina shell. Wavelength-resolved diffraction measurements and Fourier analysis on GaN-grown CESs reveal that the high-index-contrast air/alumina core/shell patterns lead to dramatic excitation of the low-order diffraction modes. Large-area (1075 × 750 µm(2)) blue-emitting InGaN/GaN light-emitting diodes (LEDs) fabricated on a 3 µm pitch CES exhibit ∼39% enhancement in the optical power compared to state-of-the-art, patterned-sapphire-substrate LEDs, while preserving all of the electrical metrics that are relevant to LED devices. Full-vectorial simulations quantitatively demonstrate the enhanced optical power of CES LEDs and show a progressive increase in the extraction efficiency as the air cavity volume is expanded. This trend in light extraction is observed for both lateral- and flip-chip-geometry LEDs. Measurements of far-field profiles indicate a substantial beaming effect for CES LEDs, despite their few-micron-pitch pattern. Near-to-far-field transformation simulations and polarization analysis demonstrate that the improved extraction efficiency of CES LEDs is ascribed to the increase in emissions via the top escape route and to the extraction of transverse-magnetic polarized light.

8.
Appl Opt ; 54(19): 6053-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26193151

RESUMO

Two-dimensional surface texturing is a widespread technology for imparting broadband antireflection, yet its design rules are not completely understood. The dependence of the reflectance spectrum of a periodically patterned glass film on various structural parameters (e.g., pitch, height, shape, and fill factor) has been investigated by means of full-vectorial numerical simulations. An average weighted reflectivity accounting for the AM1.5G solar spectrum (λ=300-1000 nm) was sinusoidally modulated by a rod pattern's height, and was minimized for pitches of 400-600 nm. When a rationally optimized cone pattern was used, the average weighted reflectivity was less than 0.5%, for incident angles of up to 40° off normal. The broadband antireflection of a cone pattern was reproduced well by a graded refractive index film model corresponding to its geometry, with the addition of a diffraction effect resulting from its periodicity. The broadband antireflection ability of optimized cone patterns is not limited to the glass material, but rather is generically applicable to other semiconductor materials, including Si and GaAs. The design rules developed herein represent a key step in the development of light-absorbing devices, such as solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...