Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139519

RESUMO

Wind-energy-harvesting generators based on inverted flag architecture are an attractive option to replace batteries in low-power wireless electronic devices and deploy-and-forget distributed sensors. This study examines two important aspects that have been overlooked in previous research: the interaction between an inverted flag and a neighboring solid boundary and the interaction among multiple contiguous inverted flags arranged in a vertical row. Systematic tests have been carried out with metal-only 'baseline' flags as well as a 'harvester' variant, i.e., the baseline metal flag covered with PVDF (polyvinylidene difluoride) piezoelectric polymer elements. In each case, dynamic response and power generation were measured and assessed. For baseline metal flags, the same qualitative trend is observed when the flag approaches an obstacle, whether this is a wall or another flag. As the gap distance reduces, the wind speed range at which flapping occurs gradually shrinks and shifts towards lower velocities. The increased damping introduced by attaching PVDF elements to the baseline metal flags led to a considerable narrowing of the flapping wind speed range, and the wall-to-flag or flag-to-flag interaction led to a power reduction of up to one order of magnitude compared to single flags. The present findings highlight the strong dependence of the power output on the flapping frequency, which decreases when the flag approaches a wall or other flags mounted onto the same pole. Minimum flag-to-flag and flag-to-wall spacing values are suggested for practical applications to avoid power reduction in multi-flag arrangements (2-3H and 1-2H respectively, where H is flag height).

2.
J R Soc Interface ; 20(206): 20230282, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751875

RESUMO

Flapping wings may encounter or 'capture' the wake from previous half-stroke, leading to local changes in the instantaneous aerodynamic force on the wing at the start of each half-stroke. In this paper, I developed a simple approach to integrating prediction of these wake capture effects into existing analytical quasi-steady models for hovering insect flapping flight. The local wake flow field is modelled as an additional induced velocity component normal to the stroke plane of the flapping motion that is blended/switched in at the start of each half-stroke. Comparison of model results against experimental data in the literature shows satisfactory agreement in predicting the wake capture lift and drag variations for eight different test cases. Sensitivity analysis shows that the form of the translation velocity time history has a significant effect on the magnitude of wake capture forces. Profiles that retain high translational velocity right up to stroke reversal evoke a much larger effect from wake capture compared with sinusoidal. This result is significant because while constant flapping translation velocity profiles can be generated in the laboratory, the very high accelerations required near stroke reversals incur high mechanical cost that prevents practical adoption in nature or engineered flapping flight vehicles.


Assuntos
Aceleração , Animais , Movimento (Física) , Asas de Animais
3.
Bioinspir Biomim ; 17(6)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36215970

RESUMO

A wing generating lift leaves behind a region of disturbed air in the form of a wake. For a hovering insect, the wings must return through the wake produced by the previous half-stroke and this can have significant effects on the aerodynamic performance. This paper numerically investigates 2D wings interacting with their own wake at Reynolds numbers of 102and 103, enabling an improved understanding of the underlying physics of the 'wake capture' aerodynamic mechanism of insect flight. We adopt a simple kinematic motion pattern comprised of a translational stroke motion followed by a complete stop to expose wake interaction effects. Representative stroke distance to chord ratios between 1.5 and 6.0 are considered, enabling different leading-edge vortex (LEV) attachment states. We also allow pitching rotation towards the end of stroke, leading to wake intercepting angles of 135°, 90°, and 45°, analogous to delayed, symmetric, and advanced pitching rotations of insect wings. It is shown that both vortex suction and jet flow impingement mechanisms can lead to either positive or negative effects depending on the LEV attachment state, and that stroke distances resulting in a detached/attached LEV lead to beneficial/detrimental wake interaction lift. Pitching rotation at the end of the stroke motion is found to induce a strong rotational trailing-edge vortex (RTEV). For advanced pitching, this RTEV serves to enable either a stronger flow impingement effect leading to positive wake interaction lift if the LEV is detached, or a less favourable vortex suction effect leading to negative wake interaction lift if the LEV is closely attached. The higher Reynolds number led to faster development of the wake vortices, but the primary wake interaction mechanisms remained the same for both Reynolds numbers.


Assuntos
Voo Animal , Acidente Vascular Cerebral , Animais , Modelos Biológicos , Asas de Animais , Fenômenos Biomecânicos , Insetos
4.
J R Soc Interface ; 19(191): 20210909, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642428

RESUMO

This paper provides a systematic and critical review of dynamic experimental rigs used for insect wing aerodynamics research. The goal is to facilitate meaningful comparison of data from existing rigs and provide insights for designers of new rigs. The scope extends from simple one degree of freedom rotary rigs to multi degrees of freedom rigs allowing various rotation and translation motions. Experimental methods are characterized using a consistent set of parameters that allows objective comparison of different approaches. A comprehensive catalogue is presented for the tested flow conditions (assessed through Reynolds number, Rossby number and advance ratio), wing morphologies (assessed through aspect ratio, planform shape and thickness to mean chord ratio) and kinematics (assessed through motion degrees of freedom). Links are made between the type of aerodynamic characteristics being studied and the type of experimental set-up used. Rig mechanical design considerations are assessed, and the aerodynamic measurements obtained from these rigs are discussed.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Insetos , Asas de Animais
5.
Insects ; 13(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621794

RESUMO

This study investigates the effect of wing planform shape on the aerodynamic performance of insect wings by numerically solving the incompressible Navier-Stokes equations. We define the wing planforms using a beta-function distribution and employ kinematics representative of normal hovering flight. In particular, we use three primary parameters to describe the planform geometry: aspect ratio, radial centroid location, and wing root offset. The force coefficients, flow structures, and aerodynamic efficiency for different wing planforms at a Reynolds number of 100 are evaluated. It is found that the wing with the lowest aspect ratio of 1.5 results in the highest peaks of lift and drag coefficients during stroke reversals, whereas the higher aspect ratio wings produce higher lift and drag coefficients during mid half-stroke translation. For the wings considered, the leading-edge vortex detachment is found to be approximately at a location that is 3.5-5 mean chord lengths from the wing center of rotation for all aspect ratios and root offsets investigated. Consequently, the detachment area increases with the increase of aspect ratio and root offset, resulting in reduced aerodynamic coefficients. The radial centroid location is found to influence the local flow evolution time, and this results in earlier formation/detachment of the leading-edge vortex for wings with a smaller radial centroid location. Overall, the best performance, when considering both average lift coefficient and efficiency, is found at the intermediate aspect ratios of 4.5-6; increasing the centroid location mainly increases efficiency; and increasing the root offset leads to a decreased average lift coefficient whilst leading to relatively small variations in aerodynamic efficiency for most aspect ratios.

6.
R Soc Open Sci ; 8(9): 210452, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34567586

RESUMO

This work aims to develop an integrated conceptual design process to assess the scalability and performance of propulsion systems of resonant motor-driven flapping wing vehicles. The developed process allows designers to explore the interaction between electrical, mechanical and aerodynamic domains in a single transparent design environment. Wings are modelled based on a quasi-steady treatment that evaluates aerodynamics from geometry and kinematic information. System mechanics is modelled as a damped second-order dynamic system operating at resonance with nonlinear aerodynamic damping. Motors are modelled using standard equations that relate operational parameters and AC voltage input. Design scaling laws are developed using available data based on current levels of technology. The design method provides insights into the effects of changing core design variables such as the actuator size, actuator mass fraction and pitching kinematics on the overall design solution. It is shown that system efficiency achieves peak values of 30-36% at motor masses of 0.5-1 g when a constant angle of attack kinematics is employed. While sinusoidal angle of attack kinematics demands more aerodynamic and electric powers compared with the constant angle of attack case, sinusoidal angle of attack kinematics can lead to a maximum difference of around 15% in peak system efficiency.

7.
Sci Rep ; 8(1): 7142, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739977

RESUMO

Jumping spiders are proficient jumpers that use jumps in a variety of behavioural contexts. We use high speed, high resolution video to measure the kinematics of a single regal jumping spider for a total of 15 different tasks based on a horizontal gap of 2-5 body lengths and vertical gap of +/-2 body lengths. For short range jumps, we show that low angled trajectories are used that minimise flight time. For longer jumps, take-off angles are steeper and closer to the optimum for minimum energy cost of transport. Comparison of jump performance against other arthropods shows that Phidippus regius is firmly in the group of animals that use dynamic muscle contraction for actuation as opposed to a stored energy catapult system. We find that the jump power requirements can be met from the estimated mass of leg muscle; hydraulic augmentation may be present but appears not to be energetically essential.


Assuntos
Comportamento Animal/fisiologia , Fenômenos Biomecânicos , Contração Muscular/fisiologia , Aranhas/fisiologia , Animais , Locomoção/fisiologia , Músculo Esquelético/fisiologia
8.
J R Soc Interface ; 14(132)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28747395

RESUMO

The presence of a stable leading edge vortex (LEV) on steadily revolving wings increases the maximum lift coefficient that can be generated from the wing and its role is important to understanding natural flyers and flapping wing vehicles. In this paper, the role of LEV in lift augmentation is discussed under two hypotheses referred to as 'additional lift' and 'absence of stall'. The 'additional lift' hypothesis represents the traditional view. It presumes that an additional suction/circulation from the LEV increases the lift above that of a potential flow solution. This behaviour may be represented through either the 'Polhamus leading edge suction' model or the so-called 'trapped vortex' model. The 'absence of stall' hypothesis is a more recent contender that presumes that the LEV prevents stall at high angles of attack where flow separation would normally occur. This behaviour is represented through the so-called 'normal force' model. We show that all three models can be written in the form of the same potential flow kernel with modifiers to account for the presence of a LEV. The modelling is built on previous work on quasi-steady models for hovering wings such that model parameters are determined from first principles, which allows a fair comparison between the models themselves, and the models and experimental data. We show that the two models which directly include the LEV as a lift generating component are built on a physical picture that does not represent the available experimental data. The simpler 'normal force' model, which does not explicitly model the LEV, performs best against data in the literature. We conclude that under steady conditions the LEV as an 'absence of stall' model/mechanism is the most satisfying explanation for observed aerodynamic behaviour.


Assuntos
Modelos Biológicos , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Voo Animal/fisiologia
9.
J Theor Biol ; 406: 187-91, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27329340

RESUMO

Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Animais , Modelos Biológicos
10.
Micromachines (Basel) ; 7(1)2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30407385

RESUMO

Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF) for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young's modulus) relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive material should have a low stiffness. In all cases, increasing the transverse electromechanical coupling coefficient of the active material improves the dynamic EMCF.

11.
PLoS One ; 10(8): e0134972, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252657

RESUMO

A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values.


Assuntos
Voo Animal/fisiologia , Insetos/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Fatores de Tempo , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
12.
Bioinspir Biomim ; 10(4): 044002, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26248884

RESUMO

Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.


Assuntos
Aeronaves , Biomimética/métodos , Voo Animal/fisiologia , Insetos/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Relógios Biológicos/fisiologia , Biomimética/instrumentação , Simulação por Computador , Esforço Físico/fisiologia , Reologia/métodos
13.
J R Soc Interface ; 11(94): 20131197, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24554578

RESUMO

This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.


Assuntos
Voo Animal/fisiologia , Modelos Biológicos , Animais , Insetos
14.
J R Soc Interface ; 11(93): 20131196, 2014 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24522785

RESUMO

An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.


Assuntos
Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...