Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892222

RESUMO

In the agricultural industry, the post-harvest leafy vegetable quality and shelf life significantly influence market value and consumer acceptability. This study examined the effects of different storage temperatures on leaf senescence, nitrogen assimilation, and remobilization in Pak Choi (Brassica rapa subsp. chinensis). Mature Pak Choi plants were harvested and stored at two different temperatures, 4 °C and 25 °C. Senescence was tracked via chlorophyll content and leaf yellowing. Concurrently, alterations in the total nitrogen, nitrate, and protein content were quantified on days 0, 3, 6, and 9 in old, mid, and young leaves of Pak Choi plants. As expected, 4 °C alleviated chlorophyll degradation and delayed senescence of Pak Choi compared to 25 °C. Total nitrogen and protein contents were inversely correlated, while the nitrate content remained nearly constant across leaf groups at 25 °C. Additionally, the transcript levels of genes involved in nitrogen assimilation and remobilization revealed key candidate genes that were differentially expressed between 4 °C and 25 °C, which might be targeted to extend the shelf life of the leafy vegetables. Thus, this study provides pivotal insights into the molecular and physiological responses of Pak Choi to post-harvest storage conditions.


Assuntos
Brassica rapa , Nitratos , Temperatura , Nitratos/metabolismo , Nitrogênio/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Verduras , Clorofila/metabolismo
2.
Membranes (Basel) ; 9(3)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875842

RESUMO

Plenty of fresh water resources are still inaccessible for human use. Calamities such as pollution, climate change, and global warming pose serious threats to the fresh water system. Although many naturally and synthetically grown materials have been taken up to resolve these issues, there is still plenty of room for enhancements in technology and material perspectives to maximize resources and to minimize harm. Considering the challenges related to the purification of water, materials in the form of nanofiber membranes and nanomaterials have made tremendous contributions to water purification and filtration. Nanofiber membranes made of synthetic polymer nanofibers, ceramic membranes etc., metal oxides in various morphologies, and carbonaceous materials were explored in relation to waste removal from water. In this review, we have discussed a few key materials that have shown effectiveness in removing pollutants from waste water, enabling solutions to existing problems in obtaining clean drinking water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...