Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 88(4): 1585-1603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811522

RESUMO

BACKGROUND: Human diseases are multi-factorial biological phenomena resulting from perturbations of numerous functional networks. The complex nature of human diseases explains frequently observed marginal or transitory efficacy of mono-therapeutic interventions. For this reason, combination therapy is being increasingly evaluated as a biologically plausible strategy for reversing disease state, fostering the development of dedicated methodological and experimental approaches. In parallel, genome-wide association studies (GWAS) provide a prominent opportunity for disclosing human-specific therapeutic targets and rational drug repurposing. OBJECTIVE: In this context, our objective was to elaborate an integrated computational platform to accelerate discovery and experimental validation of synergistic combinations of repurposed drugs for treatment of common human diseases. METHODS: The proposed approach combines adapted statistical analysis of GWAS data, pathway-based functional annotation of genetic findings using gene set enrichment technique, computational reconstruction of signaling networks enriched in disease-associated genes, selection of candidate repurposed drugs and proof-of-concept combinational experimental screening. RESULTS: It enables robust identification of signaling pathways enriched in disease susceptibility loci. Therapeutic targeting of the disease-associated signaling networks provides a reliable way for rational drug repurposing and rapid development of synergistic drug combinations for common human diseases. CONCLUSION: Here we demonstrate the feasibility and efficacy of the proposed approach with an experiment application to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Reposicionamento de Medicamentos , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos
2.
J Neurosci Res ; 98(12): 2435-2450, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815196

RESUMO

There is currently no therapy impacting the course of amyotrophic lateral sclerosis (ALS). The only approved treatments are riluzole and edaravone, but their efficacy is modest and short-lasting, highlighting the need for innovative therapies. We previously demonstrated the ability of PXT864, a combination of low doses of acamprosate and baclofen, to synergistically restore cellular and behavioral activity in Alzheimer's and Parkinson's disease models. The overlapping genetic, molecular, and cellular characteristics of these neurodegenerative diseases supported investigating the effectiveness of PXT864 in ALS. As neuromuscular junction (NMJ) alterations is a key feature of ALS, the effects of PXT864 in primary neuron-muscle cocultures injured by glutamate were studied. PXT864 significantly and synergistically preserved NMJ and motoneuron integrity following glutamate excitotoxicity. PXT864 added to riluzole significantly improved such protection. PXT864 activity was then assessed in primary cultures of motoneurons derived from SOD1G93A rat embryos. These motoneurons presented severe maturation defects that were significantly improved by PXT864. In this model, glutamate application induced an accumulation of TDP-43 protein in the cytoplasm, a hallmark that was completely prevented by PXT864. The anti-TDP-43 aggregation effect was also confirmed in a cell line expressing TDP-43 fused to GFP. These results demonstrate the value of PXT864 as a promising therapeutic strategy for the treatment of ALS.


Assuntos
Acamprosato/administração & dosagem , Esclerose Lateral Amiotrófica/tratamento farmacológico , Baclofeno/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Técnicas de Cocultura , Quimioterapia Combinada , Feminino , Agonistas dos Receptores de GABA-B/administração & dosagem , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Gravidez , Ratos , Ratos Transgênicos , Ratos Wistar
3.
J Neurosci Res ; 98(10): 1933-1952, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32588471

RESUMO

Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.


Assuntos
Baclofeno/administração & dosagem , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doenças Desmielinizantes/tratamento farmacológico , Naltrexona/administração & dosagem , Junção Neuromuscular/efeitos dos fármacos , Sorbitol/administração & dosagem , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Técnicas de Cocultura , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/fisiopatologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Masculino , Proteínas da Mielina/genética , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Junção Neuromuscular/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
4.
Curr Opin Pharmacol ; 51: 78-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31982325

RESUMO

Drug repurposing has attracted increased attention, especially in the context of drug discovery rates that remain too low despite a recent wave of approvals for biological therapeutics (e.g. gene therapy). These new biological entities-based treatments have high costs that are difficult to justify for small markets that include rare diseases. Drug repurposing, involving the identification of single or combinations of existing drugs based on human genetics data and network biology approaches represents a next-generation approach that has the potential to increase the speed of drug discovery at a lower cost. This Pharmacological Perspective reviews progress and perspectives in combining human genetics, especially genome-wide association studies, with network biology to drive drug repurposing for rare and common diseases with monogenic or polygenic etiologies. Also, highlighted here are important features of this next generation approach to drug repurposing, which can be combined with machine learning methods to meet the challenges of personalized medicine.


Assuntos
Reposicionamento de Medicamentos/tendências , Redes Reguladoras de Genes/genética , Genética Humana/tendências , Aprendizado de Máquina/tendências , Animais , Reposicionamento de Medicamentos/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Terapia Genética/métodos , Terapia Genética/tendências , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/tendências , Genética Humana/métodos , Humanos
5.
PLoS One ; 14(1): e0209752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650121

RESUMO

The most common type of Charcot-Marie-Tooth disease is caused by a duplication of PMP22 leading to dysmyelination, axonal loss and progressive muscle weakness (CMT1A). Currently, no approved therapy is available for CMT1A patients. A novel polytherapeutic proof-of-principle approach using PXT3003, a low-dose combination of baclofen, naltrexone and sorbitol, slowed disease progression after long-term dosing in adult Pmp22 transgenic rats, a known animal model of CMT1A. Here, we report an early postnatal, short-term treatment with PXT3003 in CMT1A rats that delays disease onset into adulthood. CMT1A rats were treated from postnatal day 6 to 18 with PXT3003. Behavioural, electrophysiological, histological and molecular analyses were performed until 12 weeks of age. Daily oral treatment for approximately 2 weeks ameliorated motor deficits of CMT1A rats reaching wildtype levels. Histologically, PXT3003 corrected the disturbed axon calibre distribution with a shift towards large motor axons. Despite dramatic clinical amelioration, only distal motor latencies were improved and correlated with phenotype performance. On the molecular level, PXT3003 reduced Pmp22 mRNA overexpression and improved the misbalanced downstream PI3K-AKT / MEK-ERK signalling pathway. The improved differentiation status of Schwann cells may have enabled better long-term axonal support function. We conclude that short-term treatment with PXT3003 during early development may partially prevent the clinical and molecular manifestations of CMT1A. Since PXT3003 has a strong safety profile and is currently undergoing a phase III trial in CMT1A patients, our results suggest that PXT3003 therapy may be a bona fide translatable therapy option for children and young adolescent patients suffering from CMT1A.


Assuntos
Baclofeno/farmacologia , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Naltrexona/farmacologia , Sorbitol/farmacologia , Animais , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Combinação de Medicamentos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Debilidade Muscular/metabolismo , Proteínas da Mielina/efeitos dos fármacos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Condução Nervosa , Fosfatidilinositol 3-Quinases/metabolismo , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
J Neuropathol Exp Neurol ; 77(4): 274-281, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408953

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A), the most common form of Charcot-Marie-Tooth diseases, is a demyelinating neuropathy caused by a deletion encompassing the gene coding for PMP22, a myelin protein of the peripheral nervous system. Although myelinated fibers are mostly involved in CMT1A, some patients experience neuropathic pain. We thus investigated whether unmyelinated fibers are lost in CMT1A. Skin biopsies were taken from the distal portion of the leg of 80 patients with CMT1A as part of the PXT30003-01 study and processed for quantification of intraepidermal nerve fiber density (IENFD). Mean IENFD was significantly lower in CMT1A patients than in healthy controls. Although the data were highly dispersed, IENFD tended to decrease with age and was higher overall in female patients and controls than male patients and controls. This study shows that small nerve fibers are affected in CMT1A and that this correlates with pin sensitivity. The density of epidermal Langerhans cells (LCs) was also significantly reduced in CMT1A patients, suggesting the involvement of LCs in neuropathic pain processes. These findings raise several questions concerning the interactions of Schwann cells and LCs with unmyelinated fibers in CMT1A. Moreover, they suggest that factors other than PMP22 gene dosage are involved in small fiber pathology in CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Bainha de Mielina/patologia , Fibras Nervosas/patologia , Pele/patologia , Adulto , Biópsia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas/fisiologia , Condução Nervosa/fisiologia , Índice de Gravidade de Doença , Escala Visual Analógica
8.
Sci Rep ; 5: 16084, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542636

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterised by the loss of dopaminergic nigrostriatal neurons but which involves the loss of additional neurotransmitter pathways. Mono- or polytherapeutic interventions in PD patients have declining efficacy long-term and no influence on disease progression. The systematic analysis of available genetic and functional data as well as the substantial overlap between Alzheimer's disease (AD) and PD features led us to repurpose and explore the effectiveness of a combination therapy (ABC) with two drugs - acamprosate and baclofen - that was already effective in AD animal models, for the treatment of PD. We showed in vitro that ABC strongly and synergistically protected neuronal cells from oxidative stress in the oxygen and glucose deprivation model, as well as dopaminergic neurons from cell death in the 6-hydroxydopamine (6-OHDA) rat model. Furthermore, we showed that ABC normalised altered motor symptoms in vivo in 6-OHDA-treated rats, acting by protecting dopaminergic cell bodies and their striatal terminals. Interestingly, ABC also restored a normal behaviour pattern in lesioned rats suggesting a symptomatic effect, and did not negatively interact with L-dopa. Our results demonstrate the potential value of combining repurposed drugs as a promising new strategy to treat this debilitating disease.


Assuntos
Baclofeno/farmacologia , Doença de Parkinson/tratamento farmacológico , Taurina/análogos & derivados , Acamprosato , Animais , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Quimioterapia Combinada/métodos , Feminino , Masculino , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/metabolismo , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Taurina/farmacologia
9.
Sci Rep ; 5: 7608, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25566747

RESUMO

Alzheimer disease (AD) represents a major medical problem where mono-therapeutic interventions demonstrated only a limited efficacy so far. We explored the possibility of developing a combinational therapy that might prevent the degradation of neuronal and endothelial structures in this disease. We argued that the distorted balance between excitatory (glutamate) and inhibitory (GABA/glycine) systems constitutes a therapeutic target for such intervention. We found that a combination of two approved drugs - acamprosate and baclofen - synergistically protected neurons and endothelial structures in vitro against amyloid-beta (Aß) oligomers. The neuroprotective effects of these drugs were mediated by modulation of targets in GABA/glycinergic and glutamatergic pathways. In vivo, the combination alleviated cognitive deficits in the acute Aß25-35 peptide injection model and in the mouse mutant APP transgenic model. Several patterns altered in AD were also synergistically normalised. Our results open up the possibility for a promising therapeutic approach for AD by combining repurposed drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Baclofeno/uso terapêutico , Reposicionamento de Medicamentos , Taurina/análogos & derivados , Acamprosato , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Baclofeno/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Taurina/farmacologia , Taurina/uso terapêutico
10.
Orphanet J Rare Dis ; 9: 199, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519680

RESUMO

BACKGROUND: Charcot-Marie-Tooth type 1A disease (CMT1A) is a rare orphan inherited neuropathy caused by an autosomal dominant duplication of a gene encoding for the structural myelin protein PMP22, which induces abnormal Schwann cell differentiation and dysmyelination, eventually leading to axonal suffering then loss and muscle wasting. We favour the idea that diseases can be more efficiently treated when targeting multiple disease-relevant pathways. In CMT1A patients, we therefore tested the potential of PXT3003, a low-dose combination of three already approved compounds (baclofen, naltrexone and sorbitol). Our study conceptually builds on preclinical experiments highlighting a pleiotropic mechanism of action that includes downregulation of PMP22. The primary objective was to assess safety and tolerability of PXT3003. The secondary objective aimed at an exploratory analysis of efficacy of PXT3003 in CMT1A, to be used for designing next clinical development stages (Phase 2b/3). METHODS: 80 adult patients with mild-to-moderate CMT1A received in double-blind for 1 year Placebo or one of the three increasing doses of PXT3003 tested, in four equal groups. Safety and tolerability were assessed with the incidence of related adverse events. Efficacy was assessed using the Charcot-Marie-Tooth Neuropathy Score (CMTNS) and the Overall Neuropathy Limitations Scale (ONLS) as main endpoints, as well as various clinical and electrophysiological outcomes. RESULTS: This trial confirmed the safety and tolerability of PXT3003. The highest dose (HD) showed consistent evidence of improvement beyond stabilization. CMTNS and ONLS, with a significant improvement of respectively of 8% (0.4% - 16.2%) and 12.1% (2% - 23.2%) in the HD group versus the pool of all other groups, appear to be the most sensitive clinical endpoints to treatment despite their quasi-stability over one year under Placebo. Patients who did not deteriorate over one year were significantly more frequent in the HD group. CONCLUSIONS: These results confirm that PXT3003 deserves further investigation in adults and could greatly benefit CMT1A-diagnosed children, usually less affected than adults. TRIAL REGISTRATION: EudraCT Number: 2010-023097-40. ClinicalTrials.gov Identifier: NCT01401257. The Committee for Orphan Medicinal Products issued in February 2014 a positive opinion on the application for orphan designation for PXT3003 (EMA/OD/193/13).


Assuntos
Baclofeno/administração & dosagem , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Naltrexona/administração & dosagem , Sorbitol/administração & dosagem , Adulto , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Orphanet J Rare Dis ; 9: 201, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491744

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models. We thus hypothesized that a polytherapeutic approach using several drugs, previously approved for other diseases, could be beneficial by simultaneously targeting PMP22 and pathways important for myelination and axonal integrity. A combination of drugs for CMT1A polytherapy was chosen from a group of authorised drugs for unrelated diseases using a systems biology approach, followed by pharmacological safety considerations. Testing and proof of synergism of these drugs were performed in a co-culture model of DRG neurons and Schwann cells derived from a Pmp22 transgenic rat model of CMT1A. Their ability to lower Pmp22 mRNA in Schwann cells relative to house-keeping genes or to a second myelin transcript (Mpz) was assessed in a clonal cell line expressing these genes. Finally in vivo efficacy of the combination was tested in two models: CMT1A transgenic rats, and mice that recover from a nerve crush injury, a model to assess neuroprotection and regeneration. Combination of (RS)-baclofen, naltrexone hydrochloride and D-sorbitol, termed PXT3003, improved myelination in the Pmp22 transgenic co-culture cellular model, and moderately down-regulated Pmp22 mRNA expression in Schwannoma cells. In both in vitro systems, the combination of drugs was revealed to possess synergistic effects, which provided the rationale for in vivo clinical testing of rodent models. In Pmp22 transgenic CMT1A rats, PXT3003 down-regulated the Pmp22 to Mpz mRNA ratio, improved myelination of small fibres, increased nerve conduction and ameliorated the clinical phenotype. PXT3003 also improved axonal regeneration and remyelination in the murine nerve crush model. Based on these observations in preclinical models, a clinical trial of PTX3003 in CMT1A, a neglected orphan disease, is warranted. If the efficacy of PTX3003 is confirmed, rational polytherapy based on novel combinations of existing non-toxic drugs with pleiotropic effects may represent a promising approach for rapid drug development.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Reposicionamento de Medicamentos/métodos , Proteínas da Mielina/biossíntese , Fibras Nervosas Mielinizadas/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Baclofeno/administração & dosagem , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/patologia , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Quimioterapia Combinada , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Proteínas da Mielina/antagonistas & inibidores , Naltrexona/administração & dosagem , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Sorbitol/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...