Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Clin Microbiol ; : e0014424, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775470

RESUMO

The 4th Clinical Microbiology Open (CMO) took place in Carlsbad, California, on 10 and 11 February 2023. This event facilitated discussion between clinical and public health laboratory directors, government agencies, and industry representatives from the companies that make up ASM's Corporate Council. While many topics were discussed, much of the discussion focused on pandemic preparedness. There were four major questions addressed: (i) When is the perfect the enemy of good in pandemic testing? (ii) What other types of pathogens might cause another pandemic and how would this affect laboratory response? (iii) What research is needed to better understand the effectiveness of the pandemic response? (iv) What have we learned about the utility of self and at-home testing in future pandemics? This review serves as a summary of these discussions.

2.
J Clin Microbiol ; 61(10): e0115422, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791777

RESUMO

Accurate antimicrobial susceptibility testing (AST) and reporting are essential for guiding appropriate therapy for patients and direction for public health prevention and control actions. A critical feature of AST reporting is the interpretation of AST results using clinical breakpoints for reporting as susceptible, susceptible-dose dependent, intermediate, or resistant. Breakpoints are subject to continuous adjustment and updating to best reflect current clinical data. These breakpoint changes can benefit patients and public health only if adopted in a timely manner. A recent survey identified that up to 70% of College of American Pathologists (CAP)-accredited U.S. laboratories and 45% of CAP-accredited laboratories outside the U.S. use various obsolete clinical breakpoints to interpret AST results to guide patient care. The reason for the ongoing use of obsolete breakpoints is multifactorial, including barriers encountered by laboratories, commercial AST device manufacturers, standards development organizations, and regulatory bodies alike. To begin to address this important patient safety issue, CAP implemented checklist requirements for CAP-accredited laboratories to ensure up-to-date clinical breakpoint use. Furthermore, the topic was discussed at the June 2022 American Society for Microbiology Clinical Microbiology Open (CMO) with various stakeholders to identify potential solutions. This minireview summarizes the breakpoint setting process in the U.S. and highlights solutions to close the gap between breakpoint revisions and implementation in clinical and public health laboratories. Solutions discussed include clarification of data requirements and minimum inhibitory concentration only reporting for regulatory clearance of AST devices, clinical data generation to close breakpoints gaps, advocacy, education, and greater dialogue between stakeholders.


Assuntos
Antibacterianos , Laboratórios , Humanos , Estados Unidos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
J Mol Diagn ; 25(12): 857-875, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757952

RESUMO

The use of clinical molecular diagnostic methods for detecting microbial pathogens continues to expand and, in some cases, supplant conventional identification methods in various scenarios. Analytical and clinical benefits of multiplex molecular panels for the detection of respiratory pathogens have been demonstrated in various studies. The use of these panels in managing different patient populations has been incorporated into clinical guidance documents. The Association for Molecular Pathology's Infectious Diseases Multiplex Working Group conducted a review of the current benefits and challenges to using multiplex PCR for the detection of pathogens from gastrointestinal tract, central nervous system, lower respiratory tract, and joint specimens. The Working Group also discusses future directions and novel approaches to detection of pathogens in alternate specimen types, and outlines challenges associated with implementation of these multiplex PCR panels.


Assuntos
Doenças Transmissíveis , Patologia Molecular , Humanos , Estados Unidos , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças Transmissíveis/diagnóstico
4.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36679852

RESUMO

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

5.
medRxiv ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995830

RESUMO

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a new strain harboring the spike variant D614G. With antibody and B cell analytics, we show correlates of adaptive immunity, including a differential response to D614G. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

6.
Clin Infect Dis ; 71(11): 2996-3001, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32511679

RESUMO

Diagnostic testing has played and will continue to play a major role in the coronavirus disease 2019 (COVID-19) pandemic. The ability to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory secretions is essential to determine when an individual is infected and potentially infectious to others. Viral detection is used for the identification, management, and isolation of individual patients. Viral detection is also used to determine when the virus has entered a community and how rapidly it is spreading. As communities attempt to reopen following periods of shutdown, the detection of both SARS-CoV-2 and specific antibodies that recognize the virus will become increasingly important as a means to assess infection and immunity in individuals and communities. Here, we discuss questions commonly asked by clinicians about COVID-19 diagnostic testing.


Assuntos
COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Humanos , Pandemias , SARS-CoV-2
7.
J Clin Microbiol ; 58(7)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32350043

RESUMO

The ability to provide timely identification of the causative agents of lower respiratory tract infections can promote better patient outcomes and support antimicrobial stewardship efforts. Current diagnostic testing options include culture, molecular testing, and antigen detection. These methods may require collection of various specimens, involve extensive sample treatment, and can suffer from low sensitivity and long turnaround times. This study assessed the performance of the BioFire FilmArray Pneumonia Panel (PN panel) and Pneumonia Plus Panel (PNplus panel), an FDA-cleared sample-to-answer assay that enables the detection of viruses, atypical bacteria, bacteria, and antimicrobial resistance marker genes from lower respiratory tract specimens (sputum and bronchoalveolar lavage [BAL] fluid). Semiquantitative results are also provided for the bacterial targets. This paper describes selected analytical and clinical studies that were conducted to evaluate performance of the panel for regulatory clearance. Prospectively collected respiratory specimens (846 BAL and 836 sputum specimens) evaluated with the PN panel were also tested by quantitative reference culture and molecular methods for comparison. The PN panel showed a sensitivity of 100% for 15/22 etiologic targets using BAL specimens and for 10/24 using sputum specimens. All other targets had sensitivities of ≥75% or were unable to be calculated due to low prevalence in the study population. Specificity for all targets was ≥87.2%, with many false-positive results compared to culture that were confirmed by alternative molecular methods. Appropriate adoption of this test could provide actionable diagnostic information that is anticipated to impact patient care and antimicrobial stewardship decisions.


Assuntos
Pneumonia , Infecções Respiratórias , Vírus , Humanos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase Multiplex , Infecções Respiratórias/diagnóstico , Sensibilidade e Especificidade , Vírus/genética
8.
J Clin Microbiol ; 58(7)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32350045

RESUMO

Lower respiratory tract infections, including hospital-acquired and ventilator-associated pneumonia, are common in hospitalized patient populations. Standard methods frequently fail to identify the infectious etiology due to the polymicrobial nature of respiratory specimens and the necessity of ordering specific tests to identify viral agents. The potential severity of these infections combined with a failure to clearly identify the causative pathogen results in administration of empirical antibiotic agents based on clinical presentation and other risk factors. We examined the impact of the multiplexed, semiquantitative BioFire FilmArray Pneumonia panel (PN panel) test on laboratory reporting for 259 adult inpatients submitting bronchoalveolar lavage (BAL) specimens for laboratory analysis. The PN panel demonstrated a combined 96.2% positive percent agreement (PPA) and 98.1% negative percent agreement (NPA) for the qualitative identification of 15 bacterial targets compared to routine bacterial culture. Semiquantitative values reported by the PN panel were frequently higher than values reported by culture, resulting in semiquantitative agreement (within the same log10 value) of 43.6% between the PN panel and culture; however, all bacterial targets reported as >105 CFU/ml in culture were reported as ≥105 genomic copies/ml by the PN panel. Viral targets were identified by the PN panel in 17.7% of specimens tested, of which 39.1% were detected in conjunction with a bacterial target. A review of patient medical records, including clinically prescribed antibiotics, revealed the potential for antibiotic adjustment in 70.7% of patients based on the PN panel result, including discontinuation or de-escalation in 48.2% of patients, resulting in an average savings of 6.2 antibiotic days/patient.


Assuntos
Gestão de Antimicrobianos , Pneumonia , Infecções Respiratórias , Adulto , Humanos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase Multiplex , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico
9.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32350048

RESUMO

Multiple laboratory-developed tests (LDTs) and commercially available assays have emerged to meet diagnostic needs related to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. To date, there is limited comparison data for these different testing platforms. We compared the analytical performance of a LDT developed in our clinical laboratory based on CDC primer sets and four commercially available, FDA emergency use authorized assays for SARS-CoV-2 (Cepheid, DiaSorin, Hologic Panther, and Roche Cobas) on a total of 169 nasopharyngeal swabs. The LDT and Cepheid Xpert Xpress SARS-CoV-2 assays were the most sensitive assays for SARS-CoV-2 with 100% agreement across specimens. The Hologic Panther Fusion, DiaSorin Simplexa, and Roche Cobas 6800 failed to detect positive specimens only near the limit of detection of our CDC-based LDT assay. All assays were 100% specific, using our CDC-based LDT as the gold standard. Our results provide initial test performance characteristics for SARS-CoV-2 reverse transcription-PCR (RT-PCR) and highlight the importance of having multiple viral detection testing platforms available in a public health emergency.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Humanos , Nasofaringe/virologia , Pandemias , SARS-CoV-2 , Sensibilidade e Especificidade
10.
J Clin Virol ; 124: 104262, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007841

RESUMO

BACKGROUND: In 2014, enterovirus D68 (EV-D68) was responsible for an outbreak of severe respiratory illness in children, with 1,153 EV-D68 cases reported across 49 states. Despite this, there is no commercial assay for its detection in routine clinical care. BioFire® Syndromic Trends (Trend) is an epidemiological network that collects, in near real-time, deidentified. BioFire test results worldwide, including data from the BioFire® Respiratory Panel (RP). OBJECTIVES: Using the RP version 1.7 (which was not explicitly designed to differentiate EV-D68 from other picornaviruses), we formulate a model, Pathogen Extended Resolution (PER), to distinguish EV-D68 from other human rhinoviruses/enteroviruses (RV/EV) tested for in the panel. Using PER in conjunction with Trend, we survey for historical evidence of EVD68 positivity and demonstrate a method for prospective real-time outbreak monitoring within the network. STUDY DESIGN: PER incorporates real-time polymerase chain reaction metrics from the RPRV/EV assays. Six institutions in the United States and Europe contributed to the model creation, providing data from 1,619 samples spanning two years, confirmed by EV-D68 gold-standard molecular methods. We estimate outbreak periods by applying PER to over 600,000 historical Trend RP tests since 2014. Additionally, we used PER as a prospective monitoring tool during the 2018 outbreak. RESULTS: The final PER algorithm demonstrated an overall sensitivity and specificity of 87.1% and 86.1%, respectively, among the gold-standard dataset. During the 2018 outbreak monitoring period, PER alerted the research network of EV-D68 emergence in July. One of the first sites to experience a significant increase, Nationwide Children's Hospital, confirmed the outbreak and implemented EV-D68 testing at the institution in response. Applying PER to the historical Trend dataset to determine rates among RP tests, we find three potential outbreaks with predicted regional EV-D68 rates as high as 37% in 2014, 16% in 2016, and 29% in 2018. CONCLUSIONS: Using PER within the Trend network was shown to both accurately predict outbreaks of EV-D68 and to provide timely notifications of its circulation to participating clinical laboratories.


Assuntos
Surtos de Doenças , Enterovirus Humano D , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Algoritmos , Criança , Infecções por Enterovirus/virologia , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Humanos , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
11.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31852767

RESUMO

Molecular testing of cerebrospinal fluid (CSF) using the BioFire FilmArray meningitis/encephalitis (FA-M/E) panel permits rapid, simultaneous pathogen detection. Due to the broad spectrum of targeted organisms, FA-M/E testing may be restricted to patients with abnormal CSF findings. We sought to determine if restriction is appropriate in our previously healthy and/or immunocompromised pediatric patients. FA-M/E was ordered on 1,025 CSF samples from 948 patients; 121 (11.8%) specimens were FA-M/E positive. Of these, 89 (73.6%) were virus positive, and 30 (24.8%) were bacterium positive. The most common targets detected were enterovirus (n = 38), human herpesvirus 6 (HHV-6) (n = 30), and Streptococcus pneumoniae (n = 14). Pleocytosis with white blood cell (WBC) levels of ≥5 cells/mm3 and ≥10 cells/mm3 were found in 33.1% and 24.3% of all specimens, respectively. Using WBC levels of ≥5 cells/mm3, 63.4% (59/93) of positive specimens exhibited pleocytosis, compared to 29.5% (233/789) of negative specimens. Among positive specimens, 54.4% (37/68) of viral and 87% (20/23) of bacterial cases had pleocytosis. The use of a pleocytosis cutoff of ≥10 cells/mm3 would have missed an additional enterovirus, one cytomegalovirus (CMV), and two HHV-6 diagnoses. CSF glucose and protein levels were normal for 83/116 (75.2%) and 51/116 (44%) positive specimens. Abnormal glucose in combination with WBC levels of ≥10 cells/mm3 showed high specificity (94.5%) and was a better predictor of FA-M/E positivity than abnormal protein. Sensitivity and positive predictive values were <90% for all biomarkers. CSF pleocytosis and abnormal glucose/protein were poor predictors of FA-M/E. Restricting FA-M/E orders based on pleocytosis or other abnormal parameters would have resulted in missed diagnostic opportunities, particularly for the detection of viruses in both previously healthy and immunocompromised patients.


Assuntos
Encefalite , Meningite , Vírus , Bactérias , Líquido Cefalorraquidiano , Criança , Encefalite/microbiologia , Encefalite/virologia , Feminino , Humanos , Masculino , Meningite/microbiologia , Meningite/virologia , Técnicas de Diagnóstico Molecular
12.
J Appl Lab Med ; 3(4): 643-653, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639732

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has emerged as a promising technology that enables pan-pathogen detection from any source. However, clinical utility and practical integration into the clinical microbiology work flow and a bloodstream infection detection algorithm are currently uncharted. In the context of bloodstream infections, the challenges associated with blood culture, including sensitivity, postantibiotic treatment, attaining sufficient volumes sufficient volumes, and turnaround time, are well-known. Molecular assays have helped expedite turnaround time, especially when performed directly from positive culture media bottles. mNGS offers an unbiased but more complex version of molecular testing directly from sample, but it is unclear how and if it should be implemented in the clinical microbiology laboratory today. CONTENT: Here we map out the potential utility and application of mNGS tests to infectious disease diagnostics from blood sources, including intrinsic limitations of the methodology in diagnosing bloodstream infections and sepsis vs DNAemia, current barriers to integration into routine workup, and milestones that may need to be met before implementation. SUMMARY: Polymerases and pores move faster than bugs divide, so the thermodynamics of mNGS adoption for bloodstream infection is favorable. Nonetheless, considerable activation barriers exist that will slow this likely diagnostic transition. We eagerly await the manufacturer who designs an integrated sample-to-answer box to do for mNGS what has been done for other aspects of molecular detection.


Assuntos
Bacteriemia/diagnóstico , Fungemia/diagnóstico , Metagenômica/métodos , Técnicas de Diagnóstico Molecular/métodos , Viremia/diagnóstico , Bacteriemia/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Hemocultura , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , DNA Viral/isolamento & purificação , Fungemia/microbiologia , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Viremia/virologia , Vírus/genética , Vírus/isolamento & purificação
15.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462553

RESUMO

Methicillin (ß-lactam) resistance in Staphylococcus epidermidis is mediated by the mecA gene, with resistance reported to be as high as 90%. The goal of this study was to evaluate oxacillin and cefoxitin disk diffusion (DD) and broth microdilution (BMD) methods for the detection of mecA-mediated ß-lactam resistance in 100 human isolates of S. epidermidis (48 mecA-positive isolates and 52 mecA negative isolates). Oxacillin DD tests using the Clinical and Laboratory Standards Institute (CLSI) M100-S28 breakpoints for S. pseudintermedius/S. schleiferi accurately differentiated mecA-positive and -negative S. epidermidis isolates, with categorical agreement (CA) of 100% and no very major errors (VMEs) or major errors (MEs) identified. Likewise, oxacillin BMD and cefoxitin DD tests using the coagulase-negative Staphylococcus species (CoNS) breakpoints were highly reliable for detecting mecA-mediated ß-lactam resistance in S. epidermidis isolates. For cefoxitin DD and BMD results interpreted using S. aureus/S. lugdunensis breakpoints, the CA was 97.6% and 96.2%, respectively. There were 4.9% VMEs for cefoxitin DD with 0% MEs, and 3.6% VMEs and 3.9% MEs for cefoxitin BMD. Oxacillin BMD using S. aureus/S. lugdunensis breakpoints yielded the highest VMEs at 17.4% and 90% CA. Our findings demonstrate that oxacillin DD tests using the CLSI M100-S28 breakpoints for S. pseudintermedius/S. schleiferi and oxacillin BMD and cefoxitin DD tests using the CoNS breakpoints reliably identified mecA-mediated ß-lactam resistance in S. epidermidis Using mecA PCR as the gold standard, the PBP2a SA culture colony test (Abbott Diagnostics) exhibited 100% sensitivity and specificity whereas 2 false negatives were identified using the PBP2' latex agglutination test kit (Thermo Fisher Scientific) with sensitivity and specificity of 95.8% and 100%, respectively.


Assuntos
Antibacterianos/farmacologia , Cefoxitina/farmacologia , Testes de Sensibilidade Microbiana/métodos , Oxacilina/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Resistência beta-Lactâmica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/isolamento & purificação
16.
J Clin Microbiol ; 57(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315955

RESUMO

We applied metagenomic next-generation sequencing (mNGS) to detect Zaire Ebola virus (EBOV) and other potential pathogens from whole-blood samples from 70 patients with suspected Ebola hemorrhagic fever during a 2014 outbreak in Boende, Democratic Republic of the Congo (DRC) and correlated these findings with clinical symptoms. Twenty of 31 patients (64.5%) tested in Kinshasa, DRC, were EBOV positive by quantitative reverse transcriptase PCR (qRT-PCR). Despite partial degradation of sample RNA during shipping and handling, mNGS followed by EBOV-specific capture probe enrichment in a U.S. genomics laboratory identified EBOV reads in 22 of 70 samples (31.4%) versus in 21 of 70 (30.0%) EBOV-positive samples by repeat qRT-PCR (overall concordance = 87.1%). Reads from Plasmodium falciparum (malaria) were detected in 21 patients, of which at least 9 (42.9%) were coinfected with EBOV. Other positive viral detections included hepatitis B virus (n = 2), human pegivirus 1 (n = 2), Epstein-Barr virus (n = 9), and Orungo virus (n = 1), a virus in the Reoviridae family. The patient with Orungo virus infection presented with an acute febrile illness and died rapidly from massive hemorrhage and dehydration. Although the patient's blood sample was negative by EBOV qRT-PCR testing, identification of viral reads by mNGS confirmed the presence of EBOV coinfection. In total, 9 new EBOV genomes (3 complete genomes, and an additional 6 ≥50% complete) were assembled. Relaxed molecular clock phylogenetic analysis demonstrated a molecular evolutionary rate for the Boende strain 4 to 10× slower than that of other Ebola lineages. These results demonstrate the utility of mNGS in broad-based pathogen detection and outbreak surveillance.


Assuntos
Coinfecção/epidemiologia , Surtos de Doenças , Ebolavirus/classificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Adulto , Coinfecção/parasitologia , Coinfecção/patologia , Coinfecção/virologia , República Democrática do Congo/epidemiologia , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Feminino , Doença pelo Vírus Ebola/parasitologia , Doença pelo Vírus Ebola/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
N Engl J Med ; 380(24): 2327-2340, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31189036

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test. METHODS: In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review. RESULTS: We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment. CONCLUSIONS: Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).


Assuntos
Líquido Cefalorraquidiano/microbiologia , Encefalite/microbiologia , Genoma Microbiano , Meningite/microbiologia , Metagenômica , Adolescente , Adulto , Líquido Cefalorraquidiano/virologia , Criança , Pré-Escolar , Encefalite/diagnóstico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Infecções/diagnóstico , Tempo de Internação , Masculino , Meningite/diagnóstico , Meningoencefalite/diagnóstico , Meningoencefalite/microbiologia , Pessoa de Meia-Idade , Mielite/diagnóstico , Mielite/microbiologia , Estudos Prospectivos , Análise de Sequência de DNA , Análise de Sequência de RNA , Adulto Jovem
19.
Genome Res ; 29(5): 831-842, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992304

RESUMO

Metagenomic next-generation sequencing (mNGS) for pan-pathogen detection has been successfully tested in proof-of-concept case studies in patients with acute illness of unknown etiology but to date has been largely confined to research settings. Here, we developed and validated a clinical mNGS assay for diagnosis of infectious causes of meningitis and encephalitis from cerebrospinal fluid (CSF) in a licensed microbiology laboratory. A customized bioinformatics pipeline, SURPI+, was developed to rapidly analyze mNGS data, generate an automated summary of detected pathogens, and provide a graphical user interface for evaluating and interpreting results. We established quality metrics, threshold values, and limits of detection of 0.2-313 genomic copies or colony forming units per milliliter for each representative organism type. Gross hemolysis and excess host nucleic acid reduced assay sensitivity; however, spiked phages used as internal controls were reliable indicators of sensitivity loss. Diagnostic test accuracy was evaluated by blinded mNGS testing of 95 patient samples, revealing 73% sensitivity and 99% specificity compared to original clinical test results, and 81% positive percent agreement and 99% negative percent agreement after discrepancy analysis. Subsequent mNGS challenge testing of 20 positive CSF samples prospectively collected from a cohort of pediatric patients hospitalized with meningitis, encephalitis, and/or myelitis showed 92% sensitivity and 96% specificity relative to conventional microbiological testing of CSF in identifying the causative pathogen. These results demonstrate the analytic performance of a laboratory-validated mNGS assay for pan-pathogen detection, to be used clinically for diagnosis of neurological infections from CSF.


Assuntos
Encefalite/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Meningite Asséptica/diagnóstico , Metagenômica/métodos , Mielite/diagnóstico , Criança , Biologia Computacional , Encefalite/líquido cefalorraquidiano , Humanos , Meningite Asséptica/líquido cefalorraquidiano , Mielite/líquido cefalorraquidiano , Sensibilidade e Especificidade , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...