Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Protein Pept Lett ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38706353

RESUMO

Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have briefly discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase-1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, Butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase- 1, with the time scale for the analysis of articles between 1960 to 2023, respectively. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that PON1 has suitable properties for the development of efficient prophylaxis against NA poisoning.

2.
Chem Biol Interact ; 395: 110973, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574837

RESUMO

The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.


Assuntos
Agentes Neurotóxicos , Compostos Organofosforados , Humanos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados/toxicidade , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Contramedidas Médicas , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química
3.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250172

RESUMO

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

4.
Eur J Med Chem ; 252: 115301, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996715

RESUMO

Butyrylcholinesterase (BChE) is one of the most frequently implicated enzymes in the advanced stage of Alzheimer's disease (AD). As part of our endeavors to develop new drug candidates for AD, we have focused on natural template structures, namely the Amaryllidaceae alkaloids carltonine A and B endowed with high BChE selectivity. Herein, we report the design, synthesis, and in vitro evaluation of 57 novel highly selective human BChE (hBChE) inhibitors. Most synthesized compounds showed hBChE inhibition potency ranging from micromolar to low nanomolar scale. Compounds that revealed BChE inhibition below 100 nM were selected for detailed biological investigation. The CNS-targeted profile of the presented compounds was confirmed theoretically by calculating the BBB score algorithm, these data were corroborated by determining the permeability in vitro using PAMPA-assay for the most active derivatives. The study highlighted compounds 87 (hBChE IC50 = 3.8 ± 0.2 nM) and 88 (hBChE IC50 = 5.7 ± 1.5 nM) as the top-ranked BChE inhibitors. Compounds revealed negligible cytotoxicity for the human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines compared to BChE inhibitory potential. A crystallographic study was performed to inspect the binding mode of compound 87, revealing essential interactions between 87 and hBChE active site. In addition, multidimensional QSAR analyses were applied to determine the relationship between chemical structures and biological activity in a dataset of designed agents. Compound 87 is a promising lead compound with potential implications for treating the late stages of AD.


Assuntos
Doença de Alzheimer , Alcaloides de Amaryllidaceae , Neuroblastoma , Humanos , Butirilcolinesterase/metabolismo , Alcaloides de Amaryllidaceae/farmacologia , Neuroblastoma/tratamento farmacológico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
5.
Bioorg Chem ; 134: 106465, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933339

RESUMO

Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aß1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aß1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Cristalografia , Relação Estrutura-Atividade , Peptídeos beta-Amiloides , Simulação de Acoplamento Molecular , Estrutura Molecular
6.
Eur J Med Chem ; 249: 115135, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696766

RESUMO

The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and ß1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 µM) and hERG inhibition (less than 50% at 10 µM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Humanos , Butirilcolinesterase/metabolismo , Cristalografia , Inibidores da Colinesterase/química , Doença de Alzheimer/metabolismo , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
7.
Eur J Med Chem ; 247: 115048, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586299

RESUMO

Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Cinética , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Carbamatos/farmacologia , Carbamatos/química
8.
Chembiochem ; 23(23): e202200456, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36193860

RESUMO

We report the implementation of coordination complexes containing two types of cationic moieties, i. e. pyridinium and ammonium quaternary salt, as potential inhibitors of human cholinesterase enzymes. Utilization of ligands containing NNO-coordination site and binding zinc metal ion allowed mono- and tetra-nuclear complexes to be obtained with corner and grid structural type, respectively, thus affecting the overall charge of the compounds (from +1 to +8). We were able to examine for the first time the multivalency effect of metallosupramolecular species on their inhibitory abilities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Importantly, resolution of the crystal structures of the obtained enzyme-substrate complexes provided a better understanding of the inhibition process at the molecular level.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Humanos , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Ligantes , Cátions , Simulação de Acoplamento Molecular
9.
Eur J Med Chem ; 234: 114248, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35299116

RESUMO

Lead optimization of a series of tryptophan-based nanomolar butyrylcholinesterase (BChE) inhibitors led to tertiary amines as highly potent, achiral, sp3-rich analogues with better synthetic accessibility and high selectivity over acetylcholinesterase (one to ten thousandfold). Taking it one step further, the introduction of a carbamate warhead on the well-explored reversible scaffold allowed conversion to pseudoirreversible inhibitors that bound covalently to BChE and prolonged the duration of inhibition (half-life of 14.8 h for compound 45a-carbamoylated enzyme). Additionally, N-hydroxyindole was discovered as a novel leaving group chemotype. The covalent mechanism of action was confirmed by time-dependency experiments, progress curve analysis, and indirectly by co-crystallization with the human recombinant enzyme. Two crystal structures of BChE-inhibitor complexes were solved and coupled with the supporting molecular dynamics simulations increased our understanding of the structure-activity relationship, while also providing the necessary structural information for future optimization of this series. Overall, this research demonstates the high versatility and potential of this series of BChE inhibitors.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Amidas/farmacologia , Aminas/farmacologia , Butirilcolinesterase/metabolismo , Antagonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Relação Estrutura-Atividade , Triptofano
10.
J Med Chem ; 65(6): 4649-4666, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35255209

RESUMO

Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.


Assuntos
Intoxicação por Organofosfatos , Acetilcolinesterase , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Inibidores da Colinesterase/farmacologia , Camundongos , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos Organofosforados/farmacologia , Oximas/química , Oximas/farmacologia , Oximas/uso terapêutico , Açúcares
11.
ACS Chem Neurosci ; 12(15): 2865-2877, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284583

RESUMO

Organophosphorus (OP) cholinesterase inhibitors, which include insecticides and chemical warfare nerve agents, are very potent neurotoxicants. Given that the actual treatment has several limitations, the present study provides a general method, called the zebrafish-OP-antidote test (ZOAT), and basic scientific data, to identify new antidotes that are more effective than the reference pyridinium oximes after acute OP poisoning. The reactivation capacity of a chemical compound can be measured using in vivo and ex vivo acetylcholinesterase (AChE) assays. We demonstrated that it is possible to differentiate between chemical compound protective efficacies in the central and peripheral nervous system via the visual motor response and electric field pulse motor response tests, respectively. Moreover, the ability to cross the brain-blood barrier can be estimated in a physiological context by combining an AChE assay on the head and trunk-tail fractions and the cellular and tissue localization of AChE activity in the whole-mount animal. ZOAT is an innovative method suitable for the screening and rapid identification of chemicals and mixtures used as antidote for OP poisoning. The method will make it easier to identify more effective medical countermeasures for chemical threat agents, including combinatorial therapies.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Acetilcolinesterase , Animais , Antídotos/farmacologia , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/farmacologia , Larva , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas , Peixe-Zebra
12.
J Med Chem ; 64(8): 4972-4990, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33829779

RESUMO

The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 µM), confirming the design rationale.


Assuntos
Ligantes , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anacardium/química , Anacardium/metabolismo , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Desenho de Fármacos , Humanos , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nozes/química , Nozes/metabolismo , Relação Estrutura-Atividade , Tacrina/química , Tacrina/metabolismo
13.
Antioxidants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672269

RESUMO

Neurotransmitter depletion and mitochondrial dysfunction are among the multiple pathological events that lead to neurodegeneration. Following our previous studies related with the development of multitarget mitochondriotropic antioxidants, this study aims to evaluate whether the π-system extension on the chemical scaffolds of AntiOXCIN2 and AntiOXCIN3 affects their bioactivity and safety profiles. After the synthesis of four triphenylphosphonium (TPP+) conjugates (compounds 2-5), we evaluated their antioxidant properties and their effect on neurotransmitter-metabolizing enzymes. All compounds were potent equine butyrylcholinesterase (eqBChE) and moderate electric eel acetylcholinesterase (eeAChE) inhibitors, with catechols 4 and 5 presenting lower IC50 values than AntiOXCIN2 and AntiOXCIN3, respectively. However, differences in the inhibition potency and selectivity of compounds 2-5 towards non-human and human cholinesterases (ChEs) were observed. Co-crystallization studies with compounds 2-5 in complex with human ChEs (hChEs) showed that these compounds exhibit different binging modes to hAChE and hBChE. Unlike AntiOXCINs, compounds 2-5 displayed moderate human monoamine oxidase (hMAO) inhibitory activity. Moreover, compounds 4 and 5 presented higher ORAC-FL indexes and lower oxidation potential values than the corresponding AntiOXCINs. Catechols 4 and 5 exhibited broader safety windows in differentiated neuroblastoma cells than benzodioxole derivatives 2 and 3. Compound 4 is highlighted as a safe mitochondria-targeted antioxidant with dual ChE/MAO inhibitory activity. Overall, this work is a contribution for the development of dual therapeutic agents addressing both mitochondrial oxidative stress and neurotransmitter depletion.

15.
Neurobiol Dis ; 152: 105276, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529768

RESUMO

Organophosphate pesticides and nerve agents (OPs), are characterized by cholinesterase inhibition. In addition to severe peripheral symptoms, high doses of OPs can lead to seizures and status epilepticus (SE). Long lasting seizure activity and subsequent neurodegeneration promote neuroinflammation leading to profound pathological alterations of the brain. The aim of this study was to characterize neuroinflammatory responses at key time points after SE induced by the OP, diisopropylfluorophosphate (DFP). Immunohistochemistry (IHC) analysis and RT-qPCR on cerebral tissue are often insufficient to identity and quantify precise neuroinflammatory alterations. To address these needs, we performed RT-qPCR quantification after whole brain magnetic-activated cell-sorting (MACS) of CD11B (microglia/infiltrated macrophages) and GLAST (astrocytes)-positive cells at 1, 4, 24 h and 3 days post-SE. In order to compare these results to those obtained by IHC, we performed, classical Iba1 (microglia/infiltrated macrophages) and GFAP (astrocytes) IHC analysis in parallel, focusing on the hippocampus, a brain region affected by seizure activity and neurodegeneration. Shortly after SE (1-4 h), an increase in pro-inflammatory (M1-like) markers and A2-specific markers, proposed as neurotrophic, were observed in CD11B and GLAST-positive isolated cells, respectively. Microglial cells successively expressed immuno-regulatory (M2b-like) and anti-inflammatory (M2a-like) at 4 h and 24 h post-SE induction. At 24 h and 3 days, A1-specific markers, proposed as neurotoxic, were increased in isolated astrocytes. Although IHC analysis presented no modification in terms of percentage of marked area and cell number at 1 and 4 h after SE, at 24 h and 3 days after SE, microglial and astrocytic activation was visible by IHC as an increase in Iba1 and GFAP-positive area and Iba1-positive cells in DFP animals when compared to the control. Our work identified sequential microglial and astrocytic phenotype activation. Although the role of each phenotype in SE cerebral outcomes requires further study, targeting specific markers at specific time point could be a beneficial strategy for DFP-induced SE treatment.


Assuntos
Inibidores da Colinesterase/toxicidade , Isoflurofato/toxicidade , Neuroglia/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Estado Epiléptico/induzido quimicamente , Animais , Masculino , Camundongos , Fenótipo
16.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513869

RESUMO

Organophosphorous nerve agents (OPNA) pose an actual and major threat for both military and civilians alike, as an upsurge in their use has been observed in the recent years. Currently available treatments mitigate the effect of the nerve agents, and could be vastly improved by means of scavengers of the nerve agents. Consequently, efforts have been made over the years into investigating enzymes, also known as bioscavengers, which have the potential either to trap or hydrolyze these toxic compounds. We investigated the previously described esterase 2 from Thermogutta terrifontis (TtEst2) as a potential bioscavenger of nerve agents. As such, we assessed its potential against G-agents (tabun, sarin, and cyclosarin), VX, as well as the pesticide paraoxon. We report that TtEst2 is a good bioscavenger of paraoxon and G-agents, but is rather slow at scavenging VX. X-ray crystallography studies showed that TtEst2 forms an irreversible complex with the aforementioned agents, and allowed the identification of amino-acids, whose mutagenesis could lead to better scavenging properties for VX. In conjunction with its cheap production and purification processes, as well as a robust structural backbone, further engineering of TtEst2 could lead to a stopgap bioscavenger useful for in corpo scavenging or skin decontamination.


Assuntos
Esterases/química , Agentes Neurotóxicos/química , Planctomycetales/química , Aminoácidos/química , Cristalografia por Raios X/métodos , Cinética , Organofosfatos/química , Compostos Organofosforados/química , Paraoxon/química , Planctomicetos , Sarina/química
17.
Arch Toxicol ; 95(3): 985-1001, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33517499

RESUMO

To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antídotos/síntese química , Antídotos/química , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Relação Estrutura-Atividade
18.
J Med Chem ; 64(1): 812-839, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356266

RESUMO

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Distribuição Tecidual
19.
Pharmacogenomics J ; 21(2): 165-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33024248

RESUMO

Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report the characterization of four BCHE mutations associated with prolonged effect of suxamethonium (amino acid numbering based on the matured enzyme): p.20delValPheGlyGlyThrValThr, p.Leu88His, p.Ile140del and p.Arg386Cys. Expression of recombinant BCHE mutants, kinetic analysis and molecular dynamics were undertaken to understand how these mutations induce BChE deficiency. Three of the mutations studied (p.20delValPheGlyGlyThrValThr, p.Ile140del and p.Arg386Cys) lead to a "silent" BChE phenotype. Recombinant BCHE expression studies for these mutants revealed BChE activity levels comparable to untransfected cells. Only the last one (hBChE-L88H) presented BChE activity in the transfected cell culture medium. This BChE mutant (p.Leu88His) is associated with a lower kcat value compare to the wild-type enzyme. Molecular dynamics simulations analyses suggest that a destabilization of a structure implicated in enzyme activity (Ω-loop) can explain the modification of the kinetic parameter of the mutated protein.


Assuntos
Butirilcolinesterase/genética , Mutação/genética , Succinilcolina/efeitos adversos , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Cinética , Pessoa de Meia-Idade , Mivacúrio/efeitos adversos , Fenótipo
20.
Biomolecules ; 10(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322722

RESUMO

The enzyme model, mouse acetylcholinesterase, which exhibits its active site at the bottom of a narrow gorge, was investigated in the presence of different concentrations of sucrose to shed light on the protein and water dynamics in cholinesterases. The study was conducted by incoherent neutron scattering, giving access to molecular dynamics within the time scale of sub-nano to nanoseconds, in comparison with molecular dynamics simulations. With increasing sucrose concentration, we found non-linear effects, e.g., first a decrease in the dynamics at 5 wt% followed by a gain at 10 wt% sucrose. Direct comparisons with simulations permitted us to understand the following findings: at 5 wt%, sugar molecules interact with the protein surface through water molecules and damp the motions to reduce the overall protein mobility, although the motions inside the gorge are enhanced due to water depletion. When going to 10 wt% of sucrose, some water molecules at the protein surface are replaced by sugar molecules. By penetrating the protein surface, they disrupt some of the intra-protein contacts, and induce new ones, creating new pathways for correlated motions, and therefore, increasing the dynamics. This exhaustive study allowed for an explanation of the detail interactions leading to the observed non-linear behavior.


Assuntos
Acetilcolinesterase/metabolismo , Simulação de Dinâmica Molecular , Osmose , Sacarose/farmacologia , Acetilcolinesterase/química , Animais , Camundongos , Nêutrons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...