Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 376-379, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518742

RESUMO

In this Stories piece, Sigrid Nachtergaele-an assistant professor at the Yale University Department of Molecular, Cellular, and Developmental Biology-shares her experience and efforts to cut barriers for the next generation of aspiring scientists.

2.
Annu Rev Biochem ; 92: 175-198, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018844

RESUMO

Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.


Assuntos
Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA/genética , RNA/metabolismo
3.
PLoS Biol ; 20(7): e3001717, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857761

RESUMO

The presence of m6A in mRNA of METTL3 knockout cells has long been a point of confusion. In this issue of PLOS Biology, Poh and colleagues reveal alternatively spliced, catalytically active METTL3 isoforms that persist in cells previously thought to lack the enzyme.


Assuntos
Adenosina , Metiltransferases , Adenosina/genética , Metiltransferases/genética , RNA Mensageiro/genética
4.
Sci Adv ; 8(22): eabm5563, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658032

RESUMO

Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown. We find that mutations in the CRD (but not the TMD) reduce the fold increase in SMO activity triggered by SHH. SHH also promotes the photocrosslinking of a sterol analog to the CRD in intact cells. In contrast, sterol binding to the TMD site boosts SMO activity regardless of SHH exposure. Mutational and computational analyses show that these sites are in allosteric communication despite being 45 angstroms apart. Hence, sterols function as both SHH-regulated orthosteric ligands at the CRD and allosteric ligands at the TMD to regulate SMO activity and Hh signaling.


Assuntos
Cisteína , Proteínas Hedgehog , Colesterol/metabolismo , Proteínas Hedgehog/química , Ligantes , Esteróis/química
5.
PLoS Biol ; 20(5): e3001622, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609439

RESUMO

Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. We introduce dihydrouridine sequencing (D-seq) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and small nucleolar RNA (snoRNA). The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures. We demonstrate dihydrouridine synthase (DUS)-dependent changes in splicing of a D-containing pre-mRNA in cells and show that D-modified mRNAs can be efficiently translated by eukaryotic ribosomes in vitro. This work establishes D as a new functional component of the mRNA epitranscriptome and paves the way for identifying the RNA targets of multiple DUS enzymes that are dysregulated in human disease.


Assuntos
RNA , Transcriptoma , Humanos , Nucleotídeos , RNA/química , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcriptoma/genética
6.
J Biol Chem ; 298(3): 101590, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033535

RESUMO

Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.


Assuntos
Metiltransferases , RNA Mensageiro , RNA Ribossômico 18S , Adenosina/análogos & derivados , Animais , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo
8.
Nat Commun ; 11(1): 4956, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009383

RESUMO

Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment.


Assuntos
5-Metilcitosina/análogos & derivados , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA/metabolismo , 5-Metilcitosina/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Dioxigenases , Corpos Embrioides/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
10.
Nat Methods ; 16(12): 1281-1288, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548705

RESUMO

Chemical modifications to messenger RNA are increasingly recognized as a critical regulatory layer in the flow of genetic information, but quantitative tools to monitor RNA modifications in a whole-transcriptome and site-specific manner are lacking. Here we describe a versatile platform for directed evolution that rapidly selects for reverse transcriptases that install mutations at sites of a given type of RNA modification during reverse transcription, allowing for site-specific identification of the modification. To develop and validate the platform, we evolved the HIV-1 reverse transcriptase against N1-methyladenosine (m1A). Iterative rounds of selection yielded reverse transcriptases with both robust read-through and high mutation rates at m1A sites. The optimal evolved reverse transcriptase enabled detection of well-characterized m1A sites and revealed hundreds of m1A sites in human mRNA. This work develops and validates the reverse transcriptase evolution platform, and provides new tools, analysis methods and datasets to study m1A biology.


Assuntos
Adenosina/análogos & derivados , Transcriptase Reversa do HIV/genética , RNA Mensageiro/análise , Adenosina/análise , Sequência de Bases , Fluorescência , Humanos , Mutação , Transcriptoma
11.
Annu Rev Genet ; 52: 349-372, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30230927

RESUMO

Investigations over the past eight years of chemical modifications on messenger RNA (mRNA) have revealed a new level of posttranscriptional gene regulation in eukaryotes. Rapid progress in our understanding of these modifications, particularly, N6-methyladenosine (m6A), has revealed their roles throughout the life cycle of an mRNA transcript. m6A methylation provides a rapid mechanism for coordinated transcriptome processing and turnover that is important in embryonic development and cell differentiation. In response to cellular signals, m6A can also regulate the translation of specific pools of transcripts. These mechanisms can be hijacked in human diseases, including numerous cancers and viral infection. Beyond m6A, many other mRNA modifications have been mapped in the transcriptome, but much less is known about their biological functions. As methods continue to be developed, we will be able to study these modifications both more broadly and in greater depth, which will likely reveal a wealth of new RNA biology.


Assuntos
Regulação da Expressão Gênica/genética , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Adenosina/análogos & derivados , Adenosina/genética , Humanos , Metilação , Transcriptoma/genética
12.
Nat Cell Biol ; 20(9): 1098, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29880862

RESUMO

In the version of this Article originally published, the authors incorrectly listed an accession code as GES90642. The correct code is GSE90642 . This has now been amended in all online versions of the Article.

13.
Nat Cell Biol ; 20(3): 285-295, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29476152

RESUMO

N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here, we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTH domain-containing family protein 2, IGF2BPs promote the stability and storage of their target mRNAs (for example, MYC) in an m6A-dependent manner under normal and stress conditions and therefore affect gene expression output. Moreover, the K homology domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Thus, our work reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.


Assuntos
Adenosina/análogos & derivados , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Sítios de Ligação , Movimento Celular , Proliferação de Células , Sequência Consenso , Feminino , Sangue Fetal/citologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células-Tronco Hematopoéticas/enzimologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
14.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249359

RESUMO

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Glutaratos/farmacologia , Leucemia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Glutaratos/uso terapêutico , Células HEK293 , Humanos , Células Jurkat , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Processamento Pós-Transcricional do RNA
17.
Nature ; 543(7646): 573-576, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297716

RESUMO

Cell proliferation and survival require the faithful maintenance and propagation of genetic information, which are threatened by the ubiquitous sources of DNA damage present intracellularly and in the external environment. A system of DNA repair, called the DNA damage response, detects and repairs damaged DNA and prevents cell division until the repair is complete. Here we report that methylation at the 6 position of adenosine (m6A) in RNA is rapidly (within 2 min) and transiently induced at DNA damage sites in response to ultraviolet irradiation. This modification occurs on numerous poly(A)+ transcripts and is regulated by the methyltransferase METTL3 (methyltransferase-like 3) and the demethylase FTO (fat mass and obesity-associated protein). In the absence of METTL3 catalytic activity, cells showed delayed repair of ultraviolet-induced cyclobutane pyrimidine adducts and elevated sensitivity to ultraviolet, demonstrating the importance of m6A in the ultraviolet-responsive DNA damage response. Multiple DNA polymerases are involved in the ultraviolet response, some of which resynthesize DNA after the lesion has been excised by the nucleotide excision repair pathway, while others participate in trans-lesion synthesis to allow replication past damaged lesions in S phase. DNA polymerase κ (Pol κ), which has been implicated in both nucleotide excision repair and trans-lesion synthesis, required the catalytic activity of METTL3 for immediate localization to ultraviolet-induced DNA damage sites. Importantly, Pol κ overexpression qualitatively suppressed the cyclobutane pyrimidine removal defect associated with METTL3 loss. Thus, we have uncovered a novel function for RNA m6A modification in the ultraviolet-induced DNA damage response, and our findings collectively support a model in which m6A RNA serves as a beacon for the selective, rapid recruitment of Pol κ to damage sites to facilitate repair and cell survival.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação , RNA/química , RNA/metabolismo , Raios Ultravioleta , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Biocatálise/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Metilação/efeitos da radiação , Metiltransferases/deficiência , Metiltransferases/metabolismo , Camundongos , Poli A/metabolismo , RNA/efeitos da radiação , Fase S/efeitos da radiação
18.
Cancer Cell ; 31(1): 127-141, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017614

RESUMO

N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Leucemia Mieloide Aguda/etiologia , Adenosina/metabolismo , Apoptose , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Metilação , Nucleofosmina , Receptor alfa de Ácido Retinoico/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Transcriptoma , Tretinoína/farmacologia
19.
RNA Biol ; 14(2): 156-163, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27937535

RESUMO

RNA modifications have long been known to be central in the proper function of tRNA and rRNA. While chemical modifications in mRNA were discovered decades ago, their function has remained largely mysterious until recently. Using enrichment strategies coupled to next generation sequencing, multiple modifications have now been mapped on a transcriptome-wide scale in a variety of contexts. We now know that RNA modifications influence cell biology by many different mechanisms - by influencing RNA structure, by tuning interactions within the ribosome, and by recruiting specific binding proteins that intersect with other signaling pathways. They are also dynamic, changing in distribution or level in response to stresses such as heat shock and nutrient deprivation. Here, we provide an overview of recent themes that have emerged from the substantial progress that has been made in our understanding of chemical modifications across many major RNA classes in eukaryotes.


Assuntos
Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , Animais , Humanos , Metilação , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA de Transferência/genética , RNA Viral/genética , RNA Viral/metabolismo , Viroses/virologia
20.
Elife ; 52016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27705744

RESUMO

Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility.


Assuntos
Colesterol/metabolismo , Ouriços/metabolismo , Transdução de Sinais , Receptor Smoothened/agonistas , Animais , Linhagem Celular , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...