Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095719

RESUMO

The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.

2.
Front Cell Dev Biol ; 9: 693154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222260

RESUMO

Xist is the master regulator of X-Chromosome Inactivation (XCI), the mammalian dosage compensation mechanism that silences one of the two X chromosomes in a female cell. XCI is established during early embryonic development. Xist transgene (Tg) integrated into an autosome can induce transcriptional silencing of flanking genes; however, the effect and mechanism of Xist RNA on autosomal sequence silencing remain elusive. In this study, we investigate an autosomal integration of Xist Tg that is compatible with mouse viability but causes male sterility in homozygous transgenic mice. We observed ectopic Xist expression in the transgenic male cells along with a transcriptional reduction of genes clustered in four segments on the mouse chromosome 1 (Chr 1). RNA/DNA Fluorescent in situ Hybridization (FISH) and chromosome painting confirmed that Xist Tg is associated with chromosome 1. To determine the spreading mechanism of autosomal silencing induced by Xist Tg on Chr 1, we analyzed the positions of the transcriptionally repressed chromosomal sequences relative to the Xist Tg location inside the cell nucleus. Our results show that the transcriptionally repressed chromosomal segments are closely proximal to Xist Tg in the three-dimensional nucleus space. Our findings therefore support a model that Xist directs and maintains long-range transcriptional silencing facilitated by the three-dimensional chromosome organization.

3.
Nucleic Acids Res ; 47(7): 3407-3421, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753595

RESUMO

The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes-like testis- or placenta-specific genes-is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-ß/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.


Assuntos
Regulação da Expressão Gênica/genética , Neoplasias/genética , Especificidade de Órgãos/genética , Transcrição Gênica/genética , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
4.
PLoS Genet ; 15(2): e1007909, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735494

RESUMO

Gonad differentiation is a crucial step conditioning the future fertility of individuals and most of the master genes involved in this process have been investigated in detail. However, transcriptomic analyses of developing gonads from different animal models have revealed that hundreds of genes present sexually dimorphic expression patterns. DMXL2 was one of these genes and its function in mammalian gonads was unknown. We therefore investigated the phenotypes of total and gonad-specific Dmxl2 knockout mouse lines. The total loss-of-function of Dmxl2 was lethal in neonates, with death occurring within 12 hours of birth. Dmxl2-knockout neonates were weak and did not feed. They also presented defects of olfactory information transmission and severe hypoglycemia, suggesting that their premature death might be due to global neuronal and/or metabolic deficiencies. Dmxl2 expression in the gonads increased after birth, during follicle formation in females and spermatogenesis in males. DMXL2 was detected in both the supporting and germinal cells of both sexes. As Dmxl2 loss-of-function was lethal, only limited investigations of the gonads of Dmxl2 KO pups were possible. They revealed no major defects at birth. The gonadal function of Dmxl2 was then assessed by conditional deletions of the gene in gonadal supporting cells, germinal cells, or both. Conditional Dmxl2 ablation in the gonads did not impair fertility in males or females. By contrast, male mice with Dmxl2 deletions, either throughout the testes or exclusively in germ cells, presented a subtle testicular phenotype during the first wave of spermatogenesis that was clearly detectable at puberty. Indeed, Dmxl2 loss-of-function throughout the testes or in germ cells only, led to sperm counts more than 60% lower than normal and defective seminiferous tubule architecture. Transcriptomic and immunohistochemichal analyses on these abnormal testes revealed a deregulation of Sertoli cell phagocytic activity related to germ cell apoptosis augmentation. In conclusion, we show that Dmxl2 exerts its principal function in the testes at the onset of puberty, although its absence does not compromise male fertility in mice.


Assuntos
Proteínas do Tecido Nervoso/genética , Espermatogênese/genética , Espermatozoides/fisiologia , Animais , Apoptose/genética , Feminino , Fertilidade/genética , Células Germinativas/fisiologia , Gônadas/fisiologia , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Túbulos Seminíferos/fisiologia , Células de Sertoli/fisiologia , Testículo/fisiologia
6.
Cancer Res ; 77(1): 62-73, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815388

RESUMO

Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.


Assuntos
Aneuploidia , Transformação Celular Neoplásica/genética , Instabilidade Genômica/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Neoplasias/genética , Proteínas Repressoras/genética , Animais , Western Blotting , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Cutâneas/genética
7.
J Cell Sci ; 128(2): 305-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413348

RESUMO

Pom33 is an integral membrane protein of the yeast nuclear pore complex (NPC), and it is required for proper NPC distribution and assembly. To characterize the Pom33 NPC-targeting determinants, we performed immunoprecipitation experiments followed by mass spectrometry analyses. This identified a new Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between the Pom33 C-terminal domain (CTD) and Kap123. In silico analysis predicted the presence of two amphipathic α-helices within Pom33-CTD. Circular dichroism and liposome co-flotation assays showed that this domain is able to fold into α-helices in the presence of liposomes and preferentially binds to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, this domain behaves as a Kap123-dependent nuclear localization signal (NLS). Although deletion of Pom33 C-terminal domain (Pom33(ΔCTD)-GFP) impaired Pom33 stability and NPC targeting, mutants affecting either Kap123 binding or the amphipathic properties of the α-helices did not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects targeting of Pom33 to NPCs. These data highlight the requirement of multiple determinants and mechanisms for proper NPC localization of Pom33.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dicroísmo Circular , Regulação Fúngica da Expressão Gênica , Lipídeos/genética , Lipossomos/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estrutura Secundária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , beta Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA