Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055029

RESUMO

Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Condutividade Elétrica , Hidrogéis/química , Animais , Fenômenos Químicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polimerização , Engenharia Tecidual
2.
Polymers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34301035

RESUMO

From the environmental point of view, there is high demand for the preparation of polymeric materials for various applications from renewable and/or waste sources. New lignin-based spun fibers were produced, characterized, and probed for use in methylene blue (MB) dye removal in this study. The lignin was extracted from palm fronds (PF) and banana bunch (BB) feedstock using catalytic organosolv treatment. Different polymer concentrations of either a plasticized blend of renewable polymers such as polylactic acid/polyhydroxybutyrate blend (PLA-PHB-ATBC) or polyethylene terephthalate (PET) as a potential waste material were used as matrices to generate lignin-based fibers by the electrospinning technique. The samples with the best fiber morphologies were further modified after iodine handling to ameliorate and expedite the thermostabilization process. To investigate the adsorption of MB dye from aqueous solution, two approaches of fiber modification were utilized. First, electrospun fibers were carbonized at 500 °C with aim of generating lignin-based carbon fibers with a smooth appearance. The second method used an in situ oxidative chemical polymerization of m-toluidine monomer to modify electrospun fibers, which were then nominated by hybrid composites. SEM, TGA, FT-IR, BET, elemental analysis, and tensile measurements were employed to evaluate the composition, morphology, and characteristics of manufactured fibers. The hybrid composite formed from an OBBL/PET fiber mat has been shown to be a promising adsorbent material with a capacity of 9 mg/g for MB dye removal.

3.
Int J Biol Macromol ; 182: 1820-1831, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052272

RESUMO

Developing a multifunctional wound dressing that protects, cures and indicates the healing progress, is a new approach of investigation. Red cabbage extract (RCE), consisting of bioactive compounds that have antioxidant, anti-inflammatory, anti-carcinogenic, bactericidal, antifungal, and antiviral activities, was utilized as a natural pH-sensitive indicator. Chitosan-based hydrogel, encapsulating RCE, was developed to obtain a smart therapeutic pH-sensitive wound dressing as antimicrobial bio-matrix provides a comfortable cushion for wound bed and indicates its status. Methacrylated-chitosan was crosslinked by different concentrations of methylenebisacrylamide (MBAA) by which hydrogel mechanical and morphological properties were tuned. The proposed mechanism for hydrogel formation was confirmed by FT-IR. The coloristic properties of the RCE and the changes in color intensity as a function of pH were confirmed by UV-Vis spectroscopy. The effect of MBAA on the mechanical, swelling, release and morphological properties of hydrogel were investigated. MBAA (2.5% wt/v) in 2% wt/v chitosan showed preferable mechanical (20 KPa), swelling (1294% at pH 8 ± 0.2), and release (prolonged up to 5 days) properties. Hydrogel matrices, loaded on cotton gauze submerged in different pH buffer solutions, showed explicit color changes from green to red as pH changed from 9 to 4.


Assuntos
Bandagens , Brassica/química , Quitosana/farmacologia , Hidrogéis/farmacologia , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Acrilamidas/química , Antocianinas/análise , Quitosana/química , Colorimetria , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Porosidade , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Carbohydr Polym ; 229: 115522, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826420

RESUMO

Uncontrolled hemorrhage continues to be the leading cause of death from traumatic injuries both in the battlefield and in the civilian life. Chitosan is among the very few materials that have made the short list of military recommended field-deployable hemostatic dressings. However, the detailed mechanism of its action is still not fully understood. Moreover, in the cases when patients developed coagulopathy, the efficacy of the dressings rely solely on those mechanisms that work outside of the regular blood coagulation cascade. In addition to the well-known erythrocyte agglutination, we proposed to use the reactive N-iodoacetyl group on a new chitosan derivative to accelerate hemostasis. In this paper, we describe the synthesis of chitosan iodoacetamide (CI) with considerations of the stoichiometry among the reagents, the choice of solvent, the pH of the reaction medium, and the reaction time. The reaction was confirmed by FT-IR, 1H and 13C NMR, elemental analysis, iodine content analysis, and SEM-EDS. Water contact angle measurements and Erythrocyte Sedimentation Rate (ESR) method were used to evaluate the hemostatic potential of the newly synthesized CI as a function of their degree of substitution (DS). The range of DS was 5.9% to 27.8% for CI. The mid-range of DS gave the best results for the ESR. CIs exhibit favorable cytocompatibilities up to DS 18.7 compared to the generic unmodified chitosan. In general, the biocompatibility of chitosan iodoacetamide slightly declined with increasing the iodide content up to DS 21.5 owing to its affinity to SH groups of cells.


Assuntos
Materiais Biocompatíveis/química , Carbodi-Imidas/química , Quitosana/química , Iodoacetamida/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sedimentação Sanguínea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Iodoacetamida/síntese química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...