Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Placenta ; 150: 22-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581971

RESUMO

INTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.


Assuntos
Líquido Amniótico , Metabolômica , Placenta , Feminino , Animais , Gravidez , Líquido Amniótico/metabolismo , Líquido Amniótico/química , Placenta/metabolismo , Metabolômica/métodos , Ratos , Metaboloma , Feto/metabolismo
2.
J Dev Orig Health Dis ; 14(5): 602-613, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822211

RESUMO

The maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment. In oocytes from females on HH diet, transcriptomic analysis revealed a weak modification in the content of transcripts mainly involved in meiosis and translational control. The effect of maternal HH diet on the embryonic microenvironment was investigated by identifying the metabolite composition of uterine and embryonic fluids collected in vivo by biomicroscopy. Metabolomic analysis revealed differences in the HH uterine fluid surrounding the embryo, with increased pyruvate concentration. Within the blastocoelic fluid, metabolomic profiles showed decreased glucose and alanine concentrations. In addition, the blastocyst transcriptome showed under-expression of genes and pathways involved in lipid, glucose and amino acid transport and metabolism, most pronounced in female embryos. This work demonstrates that the maternal HH diet disrupts the in vivo composition of the embryonic microenvironment, where the presence of nutrients is increased. In contrast to this nutrient-rich environment, the embryo presents a decrease in nutrient sensing and metabolism suggesting a potential protective process. In addition, this work identifies a very early sex-specific response to the maternal HH diet, from the blastocyst stage.


Assuntos
Blastocisto , Dieta Hiperlipídica , Animais , Masculino , Coelhos , Feminino , Dieta Hiperlipídica/efeitos adversos , Blastocisto/fisiologia , Embrião de Mamíferos , Oócitos , Glucose/metabolismo , Desenvolvimento Embrionário/fisiologia
3.
Sci Rep ; 13(1): 8867, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258592

RESUMO

Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.


Assuntos
Galinhas , Músculo Esquelético , Animais , Galinhas/metabolismo , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Músculos Peitorais/fisiologia , Metaboloma
4.
J Biomed Sci Eng ; 15(5): 140-156, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36507464

RESUMO

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.

5.
Front Mol Neurosci ; 15: 888318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795688

RESUMO

Microbubble (MB)-assisted ultrasound (US) is a promising physical method to increase non-invasively, transiently, and precisely the permeability of the blood-brain barrier (BBB) to therapeutic molecules. Previous preclinical studies established the innocuity of this procedure using complementary analytical strategies including transcriptomics, histology, brain imaging, and behavioral tests. This cross-sectional study using rats aimed to investigate the metabolic processes following acoustically-mediated BBB opening in vivo using multimodal and multimatrices metabolomics approaches. After intravenous injection of MBs, the right striata were exposed to 1-MHz sinusoidal US waves at 0.6 MPa peak negative pressure with a burst length of 10 ms, for 30 s. Then, the striata, cerebrospinal fluid (CSF), blood serum, and urine were collected during sacrifice in three experimental groups at 3 h, 2 days, and 1 week after BBB opening (BBBO) and were compared to a control group where no US was applied. A well-established analytical workflow using nuclear magnetic resonance spectrometry and non-targeted and targeted high-performance liquid chromatography coupled to mass spectrometry were performed on biological tissues and fluids. In our experimental conditions, a reversible BBBO was observed in the striatum without physical damage or a change in rodent weight and behavior. Cerebral, peri-cerebral, and peripheral metabolomes displayed specific and sequential metabolic kinetics. The blood serum metabolome was more impacted in terms of the number of perturbated metabolisms than in the CSF, the striatum, and the urine. In addition, perturbations of arginine and arginine-related metabolisms were detected in all matrices after BBBO, suggesting activation of vasomotor processes and bioenergetic supply. The exploration of the tryptophan metabolism revealed a transient vascular inflammation and a perturbation of serotoninergic neurotransmission in the striatum. For the first time, we characterized the metabolic signature following the acoustically-mediated BBBO within the striatum and its surrounding biological compartments.

6.
Metabolites ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35736488

RESUMO

The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFß (Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in various key biological processes (differentiation, proliferation, apoptosis, inflammation), including cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry. Metabolomics analyses on both serum and soleus revealed profound differences between wild-type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10 in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal muscle defects as well as other diseases.

7.
EMBO J ; 41(12): e108306, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35506364

RESUMO

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Animais , Antivirais/farmacologia , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Camundongos , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , Replicação Viral
8.
Sci Rep ; 12(1): 5533, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365762

RESUMO

The pHu+ and pHu- lines, which were selected based on the ultimate pH (pHu) of the breast muscle, represent a unique model to study the genetic and physiological controls of muscle energy store in relation with meat quality in chicken. Indeed, pHu+ and pHu- chicks show differences in protein and energy metabolism soon after hatching, associated with a different ability to use energy sources in the muscle. The present study aimed to assess the extent to which the nutritional environment of the embryo might contribute to the metabolic differences observed between the two lines at hatching. Just before incubation (E0), the egg yolk of pHu+ exhibited a higher lipid percentage compared to the pHu- line (32.9% vs. 27.7%). Although 1H-NMR spectroscopy showed clear changes in egg yolk composition between E0 and E10, there was no line effect. In contrast, 1H-NMR analysis performed on amniotic fluid at embryonic day 10 (E10) clearly discriminated the two lines. The amniotic fluid of pHu+ was richer in leucine, isoleucine, 2-oxoisocaproate, citrate and glucose, while choline and inosine were more abundant in the pHu- line. Our results highlight quantitative and qualitative differences in metabolites and nutrients potentially available to developing embryos, which could contribute to metabolic and developmental differences observed after hatching between the pHu+ and pHu- lines.


Assuntos
Galinhas , Zigoto , Animais , Galinhas/genética , Concentração de Íons de Hidrogênio , Carne/análise , Músculo Esquelético/metabolismo , Nutrientes
9.
Transplantation ; 106(9): 1831-1843, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442245

RESUMO

BACKGROUND: Ischemia-related injury during the preimplantation period impacts kidney graft outcome. Evaluating these lesions by a noninvasive approach before transplantation could help us to understand graft injury mechanisms and identify potential biomarkers predictive of graft outcomes. This study aims to determine the metabolomic content of graft perfusion fluids and its dependence on preservation time and to explore whether tubular transporters are possibly involved in metabolomics variations. METHODS: Kidneys were stored on hypothermic perfusion machines. We evaluated the metabolomic profiles of perfusion fluids (n = 35) using liquid chromatography coupled with tandem mass spectrometry and studied the transcriptional expression of tubular transporters on preimplantation biopsies (n = 26), both collected at the end of graft perfusion. We used univariate and multivariate analyses to assess the impact of perfusion time on these parameters and their relationship with graft outcome. RESULTS: Seventy-two metabolites were found in preservation fluids at the end of perfusion, of which 40% were already present in the native conservation solution. We observed an increase of 23 metabolites with a longer perfusion time and a decrease of 8. The predictive model for time-dependent variation of metabolomics content showed good performance (R 2 = 76%, Q 2 = 54%, accuracy = 41%, and permutation test significant). Perfusion time did not affect the mRNA expression of transporters. We found no correlation between metabolomics and transporters expression. Neither the metabolomics content nor transporter expression was predictive of graft outcome. CONCLUSIONS: Our results call for further studies, focusing on both intra- and extratissue metabolome, to investigate whether transporter alterations can explain the variations observed in the preimplantation period.


Assuntos
Transplante de Rim , Sobrevivência de Enxerto , Humanos , Rim/metabolismo , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Metaboloma , Metabolômica/métodos , Preservação de Órgãos/métodos , Perfusão/métodos
10.
Metabolites ; 11(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677396

RESUMO

Metabolomics has been increasingly used in animal and food sciences. Animal health is one of the most important factor that can also alter animal integrity and welfare. Some studies have already investigated the link between health and metabolic profile of dairy animals. These studies in metabolomics often consider a single type of sample using a single analytical platform (nuclear magnetic resonance or mass spectrometry). Only few studies with multi-platform approaches are also used with a single or a multi type of sample, but they mainly consider dairy cows' metabolome although dairy goats present similar diseases, that it could be interesting to detect early to preserve animal health and milk production. This study aims to create a metabolic atlas of goat plasma, milk and feces, based on healthy animals. Our study describes a standard operating procedure for three goat matrices: blood plasma, milk, and feces using multiple platforms (NMR (1H), UHPLC (RP)-MS and UHPLC (HILIC)-MS) that follows a unique sample preparation procedure for each sample type to be analyzed on multi-platforms basis. Our method was evaluated for its robustness and allowed a better characterization of goat metabolic profile in healthy conditions.

11.
Anal Biochem ; 630: 114330, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364856

RESUMO

OBJECTIVES: Trimethylaminuria, also known as Fish Odor Syndrome (FOS), is a condition characterized by the presence of high concentrations of trimethylamine (TMA) in urine, sweat and expired air of affected patients. Diagnosis of this benign but unpleasant disease is mainly based on clinical presentation and assessment of TMA and its metabolite, TMAO (trimethylamine-N-oxide), concentrations in urine of patients. MATERIAL AND METHODS: We here described the validation of an analytical method for measurement of TMA and TMAO in urine using nuclear magnetic resonance (NMR) according to the specifications of the ISO 15189 norm. We used a fast validation protocol, based exactitude profile method, enabling to determine accuracy, intra and inter-day precision from a limited number of samples. RESULTS: The linearity was established from 2.5 to 100 mg/L for TMA measurement and from 10 to 1000 mg/L for TMAO measurement, with good analytical performances i.e. accuracy, intra and inter-day precision. We also report a case diagnose for FOS from this method. CONCLUSIONS: This method validation ensures the robustness of NMR in routine use for diagnosis of trimethylaminuria, as part of the reference center for inherited metabolic diseases at the Tours hospital.


Assuntos
Erros Inatos do Metabolismo/urina , Metilaminas/urina , Calibragem , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Erros Inatos do Metabolismo/diagnóstico , Pessoa de Meia-Idade , Controle de Qualidade
12.
J Proteome Res ; 20(8): 3853-3864, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34282913

RESUMO

Studying the metabolome of specific gestational compartments is of growing interest in the context of fetus developmental disorders. However, the metabolomes of the placenta and amniotic fluid (AF) are poorly characterized. Therefore, we present the validation of a fingerprinting methodology. Using pregnant rats, we performed exhaustive and robust extractions of metabolites in the AF and lipids and more polar metabolites in the placenta. For the AF, we compared the extraction capabilities of methanol (MeOH), acetonitrile (ACN), and a mixture of both. For the placenta, we compared (i) the extraction capabilities of dichloromethane, methyl t-butyl ether (MTBE), and butanol, along with (ii) the impact of lyophilization of the placental tissue. Analyses were performed on a C18 and hydrophilic interaction liquid chromatography combined with high-resolution mass spectrometry. The efficiency and the robustness of the extractions were compared based on the number of the features or metabolites (for untargeted or targeted approach, respectively), their mean total intensity, and their coefficient of variation (% CV). The extraction capabilities of MeOH and ACN on the AF metabolome were equivalent. Lyophilization also had no significant impact and usefulness on the placental tissue metabolome profiling. Considering the placental lipidome, MTBE extraction was more informative because it allowed extraction of a slightly higher number of lipids, in higher concentration. This proof-of-concept study assessing the metabolomics and lipidomics of the AF and the placenta revealed changes in both metabolisms, at two different stages of rat gestation, and allowed a detailed prenatal metabolic fingerprinting.


Assuntos
Líquido Amniótico , Placenta , Animais , Feminino , Espectrometria de Massas , Metaboloma , Metabolômica , Gravidez , Ratos , Fluxo de Trabalho
13.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299389

RESUMO

Currently, most clinical studies in metabolomics only consider a single type of sample such as urine, plasma, or feces and use a single analytical platform, either NMR or MS. Although some studies have already investigated metabolomics data from multiple fluids, the information is limited to a unique analytical platform. On the other hand, clinical studies investigating the human metabolome that combine multi-analytical platforms have focused on a single biofluid. Combining data from multiple sample types for one patient using a multimodal analytical approach (NMR and MS) should extend the metabolome coverage. Pre-analytical and analytical phases are time consuming. These steps need to be improved in order to move into clinical studies that deal with a large number of patient samples. Our study describes a standard operating procedure for biological specimens (urine, blood, saliva, and feces) using multiple platforms (1H-NMR, RP-UHPLC-MS, and HILIC-UHPLC-MS). Each sample type follows a unique sample preparation procedure for analysis on a multi-platform basis. Our method was evaluated for its robustness and was able to generate a representative metabolic map.


Assuntos
Sangue/metabolismo , Fezes/química , Metaboloma , Saliva/química , Manejo de Espécimes/normas , Urina/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos
14.
Transl Psychiatry ; 11(1): 235, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888684

RESUMO

Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Metaboloma , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Biol Reprod ; 104(4): 794-805, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459770

RESUMO

The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.


Assuntos
Blastocisto/metabolismo , Líquidos Corporais/metabolismo , Metaboloma/fisiologia , Animais , Blastocisto/química , Líquidos Corporais/química , Embrião de Mamíferos , Feminino , Metabolômica , Microscopia Acústica , Gravidez , Coelhos , Útero/diagnóstico por imagem
16.
Ultrasound Med Biol ; 46(7): 1565-1583, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32331799

RESUMO

Microbubble-assisted ultrasound has emerged as a promising method for local drug delivery. Microbubbles are intravenously injected and locally activated by ultrasound, thus increasing the permeability of vascular endothelium for facilitating extravasation and drug uptake into the treated tissue. Thereby, endothelial cells are the first target of the effects of ultrasound-driven microbubbles. In this review, the in vitro and in vivo bioeffects of this method on endothelial cells are described and discussed, including aspects on the permeabilization of biologic barriers (endothelial cell plasma membranes and endothelial barriers), the restoration of their integrity, the molecular and cellular mechanisms involved in both these processes, and the resulting intracellular and intercellular consequences. Finally, the influence of the acoustic settings, microbubble parameters, treatment schedules and flow parameters on these bioeffects are also reviewed.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais , Microbolhas/uso terapêutico , Ondas Ultrassônicas , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos
17.
Free Radic Biol Med ; 150: 53-65, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084513

RESUMO

Lung cysteine cathepsin S (CatS) that is a potent elastase plays a deleterious role in alveolar remodeling during smoke-induced emphysema. Despite the presence of a reactive nucleophilic cysteine (Cys25) within its active site, most of its elastinolytic activity is preserved after exposure to cigarette smoke extract (CSE), a major source of sulfhydryl oxidants. This result led us to decipher CatS resistance to major and representative CSE oxidants: hydrogen peroxide, formaldehyde, acrolein and peroxynitrite. CatS was inactivated by hydrogen peroxide, peroxynitrite and acrolein in a time- and dose-dependent manner, while formaldehyde was a weaker oxidant. Hydrogen peroxide, but not CSE, formaldehyde, and peroxynitrite impaired the autocatalytic maturation of pro-CatS, whereas acrolein prevented the formation of mature CatS without hindering the initial step of the two-step autocatalytic process. Far-UV CD spectra analysis supported that oxidation by CSE and hydrogen peroxide did not led to a structural alteration of CatS, despite a notable increase of protein carbonylation, a major hallmark of oxidative damage. Evaluation of the oxidation status of Cys25 by specific biotinylated redox sensing probes suggested the formation of sulfenic acid followed by a slower conversion to sulfinic acid after incubation with hydrogen peroxide. Addition of reducing reagents (dithiothreitol, glutathione and N-acetyl cysteine) led to a partial recovery of CatS activity following incubation with CSE, hydrogen peroxide and peroxynitrite. Current results provide some mechanistic evidence of CatS stability and activity in the presence of CSE, supporting its harmful contribution to the pathophysiology of emphysema.


Assuntos
Nicotiana , Fumaça , Catepsinas , Oxirredução , Fumar
18.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31560161

RESUMO

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Metaboloma , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/genética
19.
Talanta ; 195: 593-598, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625588

RESUMO

In this study, we validated a method for quantifying 20 tryptophan (Trp) catabolites by liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) in 4 different matrices (urine, serum, intestinal contents and liver). The detection limit for all metabolites ranged between 0.015 and 11.25 nmol/L and the dynamic range of the calibration curves were adjusted to allow quantification of metabolites at endogenous levels. Matrix effects were evaluated using isotope labeled internal standards. Reproducibility in the 4 matrices was characterized by CV = 6.2% with an accuracy of 6.6%. Our method has been applied to the determination and quantification of 20 metabolites concentrations in 5 different mouse compartments (plus cecal contents). Our results show that our approach allows for a global exploration of the Trp metabolism by quantifying a large number of Trp metabolites, at the individual level by multi-matrix approach.


Assuntos
Ceco/química , Conteúdo Gastrointestinal/química , Fígado/química , Triptofano/análise , Triptofano/metabolismo , Animais , Ceco/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cinurenina/metabolismo , Fígado/metabolismo , Espectrometria de Massas , Camundongos , Reprodutibilidade dos Testes , Serotonina/metabolismo
20.
Poult Sci ; 98(3): 1425-1431, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325459

RESUMO

The increasing cost of conventional feedstuffs used in poultry diets has bolstered interest in genetic selection for digestive efficiency (DE) to improve the adaptation of the birds to various alternative feedstuffs. However, DE measurement through AMEn is time-consuming and constraining. To simplify selection for DE, the potential of serum composition to predict AMEn was evaluated based on 40 birds from two broiler lines (D+ and D-) divergently selected on the fecal AMEn of a difficult-to-digest wheat-based diet. Differences in serum coloration were suspected between the two lines, and thus a spectrophotometric analysis was carried out, revealing a significant difference in absorption between 430 nm and 516 nm, corresponding to the signature of orange-red lipophilic pigments such as xanthophylls. To go further, the liposoluble fraction of the serum was explored for its lipidome by mass spectrometry. Discriminant analysis revealed that a pattern of 10 metabolites, including zeaxanthin/lutein, can explain 82% of the lipidomic differences between the two lines. Colorimetry combined with lipidomics studies confirmed the relationship between digestive efficiency and serum composition, which opens up new possibilities for using it as a quick and easy proxy of digestive efficiency.


Assuntos
Galinhas/sangue , Digestão/fisiologia , Lipídeos/sangue , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/genética , Galinhas/fisiologia , Colorimetria/veterinária , Dieta/veterinária , Digestão/genética , Fezes , Pigmentação , Espectrofotometria/veterinária , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...