Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Neurosci ; 30(1-3): 117-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18075260

RESUMO

Stromal-derived factor 1 (SDF-1), a known chemoattractant, and its receptor CXCR4 are widely expressed in the developing and adult cerebral cortex. Recent studies have highlighted potential roles for SDF-1 during early cortical development. In view of the current findings, our histological analysis has revealed a distinct pattern of SDF-1 expression in the developing cerebral cortex at a time when cell proliferation and migration are at peak. To determine the role of chemokine signalling during early cortical development, embryonic rat brain slices were exposed to a medium containing secreted SDF-1 to perturb the endogenous levels of chemokine. Alternatively, brain slices were treated with 40 muM of T140 or AMD3100, known antagonists of CXCR4. Using these experimental approaches, we demonstrate that chemokine signalling is imperative for the maintenance of the early cortical plate. In addition, we provide evidence that both neurogenesis and radial migration are concomitantly regulated by this signalling system. Conversely, interneurons, although not dependent on SDF-1 signalling to transgress the telencephalic boundary, require the chemokine to maintain their tangential migration. Collectively, our results demonstrate that SDF-1 with its distinct pattern of expression is essential and uniquely positioned to regulate key developmental events that underlie the formation of the cerebral cortex.


Assuntos
Movimento Celular/genética , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Quimiocina CXCL12/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Fármacos Anti-HIV/farmacologia , Benzilaminas , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/farmacologia , Ciclamos , Regulação da Expressão Gênica no Desenvolvimento/genética , Compostos Heterocíclicos/farmacologia , Humanos , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oligopeptídeos/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
2.
Mol Cell Biol ; 27(22): 7935-46, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17875933

RESUMO

The c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of various physiological processes. Its activity is increased upon phosphorylation by the MAPK kinases MKK4 and MKK7. The early embryonic death of mice lacking an mkk4 or mkk7 gene has provided genetic evidence that MKK4 and MKK7 have nonredundant functions in vivo. To elucidate the physiological role of MKK4, we generated a novel mouse model in which the mkk4 gene could be specifically deleted in the brain. At birth, the mutant mice were indistinguishable from their control littermates, but they stopped growing a few days later and died prematurely, displaying severe neurological defects. Decreased JNK activity in the absence of MKK4 correlated with impaired phosphorylation of a subset of physiologically relevant JNK substrates and with altered gene expression. These defects resulted in the misalignment of the Purkinje cells in the cerebellum and delayed radial migration in the cerebral cortex. Together, our data demonstrate for the first time that MKK4 is an essential activator of JNK required for the normal development of the brain.


Assuntos
Encéfalo , Deleção de Genes , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Encéfalo/anormalidades , Encéfalo/embriologia , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular/fisiologia , Ativação Enzimática , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Gravidez
3.
BMC Dev Biol ; 7: 31, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17425785

RESUMO

BACKGROUND: Stromal derived factor (SDF-1), an alpha chemokine, is a widely known chemoattractant in the immune system. A growing body of evidence now suggests multiple regulatory roles for SDF-1 in the developing nervous system. RESULTS: To investigate the role of SDF-1 signaling in the growth and differentiation of cortical cells, we performed numerous in vitro experiments, including gene chip and quantitative RT-PCR analysis. Using SDF-1 medium and AMD3100, a receptor antagonist, we demonstrate that the chemokine signaling regulates key events during early cortical development. First, SDF-1 signaling maintains cortical progenitors in proliferation, possibly through a mechanism involving connexin 43 mediated intercellular coupling. Second, SDF-1 signaling upregulates the differentiation of cortical GABAergic neurons, independent of sonic signaling pathway. Third, SDF-1 enables the elongation and branching of axons of cortical glutamatergic neurons. Finally, cortical cultures derived from CXCR4-/- mutants show a close parallel to AMD3100 treatment with reduced cell proliferation and differentiation of GABAergic neurons. CONCLUSION: Results from this study show that SDF-1 regulates distinct cortical cell populations in vitro.


Assuntos
Córtex Cerebral/citologia , Quimiocinas CXC/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Animais , Axônios/ultraestrutura , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Quimiocina CXCL12 , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Receptores CXCR4/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Nat Neurosci ; 6(12): 1284-91, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608361

RESUMO

Several genes essential for neocortical layering have been identified in recent years, but their precise roles in this process remain to be elucidated. Mice deficient in p35--an activator of cyclin-dependent kinase 5 (Cdk5)--are characterized by a neocortex that has inverted layering. To decipher the physiological mechanisms that underlie this defect, we compared time-lapse recordings between p35(-/-) and wild-type cortical slices. In the p35(-/-) neocortex, the classic modes of radial migration--somal translocation and locomotion--were largely replaced by a distinct mode of migration: branched migration. Branched migration is cell-autonomous, associated with impaired neuronal-glial interaction and rare in neurons of scrambler mice, which are deficient in Dab1. Hence, our findings suggest that inside-out layering requires distinct functions of Reelin and p35/Cdk5 signaling, with the latter being important for proper glia-guided migration.


Assuntos
Movimento Celular/fisiologia , Proteínas do Tecido Nervoso/deficiência , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Feminino , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/citologia , Neurônios/citologia , Gravidez , Proteína Reelina
5.
Glia ; 43(1): 33-36, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12761863

RESUMO

A series of recent studies have demonstrated that radial glia are neural precursors in the developing cerebral cortex. These studies have further implied that these cells are the sole precursor constituents of the dorsal forebrain ventricular zone that generate the projection neurons of the cortex. In view of these new findings, this review discusses radial neurons, a progeny of cortical neurons that are generated by radial glia and adopt somal translocation as the mode of migration.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Neuroglia/citologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Humanos , Neuroglia/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia
7.
Nat Rev Neurosci ; 3(6): 423-32, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12042877

RESUMO

The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.


Assuntos
Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Diferenciação Celular/fisiologia , Córtex Cerebral/embriologia , Humanos , Interneurônios/citologia , Interneurônios/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Neuroglia/citologia , Neuroglia/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
8.
Exp Neurol ; 174(2): 259-65, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11922667

RESUMO

Neuronal migration, a discrete event in the developing nervous system, is currently being intensively investigated using a variety of anatomical and molecular approaches. Using 4-chloromethyl benzoyl amino tetramethyl rhodamine (CMTMR) coated particles, we describe here a novel and efficient method of tracer labeling to investigate cell migration in embryonic and postnatal brain. Further, we demonstrate that application of CMTMR facilitates the labeling of a large number of migrating cells and enables the characterization of their phenotypes with immunohistochemical and in situ hybridization techniques. We also illustrate that CMTMR labeling is ideally suited for time-lapse imaging of the behavior and dynamics of migrating cells.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Movimento Celular/fisiologia , Neurônios/citologia , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Contagem de Células , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Microscopia/métodos , Microesferas , Neurônios/fisiologia , Fenótipo , Ratos , Rodaminas/química , Fatores de Tempo , Tungstênio/química
9.
Nat Neurosci ; 5(3): 218-24, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850632

RESUMO

It is believed that postmitotic neurons migrate away from their sites of origin in the germinal zones to populate distant targets. Contrary to this notion, we found, using time-lapse imaging of brain slices, populations of neurons positioned at various levels of the developing neocortex that migrate towards the cortical ventricular zone. After a pause in this proliferative zone, they migrate radially in the direction of the pial surface to take up positions in the cortical plate. Immunohistochemical analysis together with tracer labeling in brain slices showed that cells showing ventricle-directed migration in the developing cortex are GABAergic interneurons originating in the ganglionic eminence in the ventral telencephalon. We speculate that combinations of chemoattractant and chemorepellent molecules are involved in this ventricle-directed migration and that interneurons may seek the cortical ventricular zone to receive layer information.


Assuntos
Movimento Celular/fisiologia , Ventrículos Cerebrais/embriologia , Interneurônios/fisiologia , Neocórtex/embriologia , Animais , Ácidos Carboxílicos/metabolismo , Ventrículos Cerebrais/citologia , Corantes Fluorescentes/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Microscopia Confocal , Neocórtex/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...